Home
Editorial Boards
Author Guide
Editor Guide
Reviewer Guide
Published Issues
journal menu
Aims and Scope
Article Processing Charge
Indexing Service
Open Access
Publication Ethics
Editorial Process
Contact Us
Copyright and Licensing
General Information
ISSN:
2315-4462 (Print); 2373-3594 (Online)
Abbreviated Title:
Int. J Smart Grid Clean Energy
Frequency:
4 issues per year
Editor-in-Chief:
Prof. Danny Sutanto
DOI:
10.12720/sgce
APC:
500 USD
Indexed by:
Inspec (IET),
CNKI
, Crossref, Google Scholar,
etc
.
Editor-in-Chief
Prof. Danny Sutanto
University of Wollongong, Australia
I am very excited to serve as the first Editor-in-Chief of the Journal of Smart Grid and Clean Energy (IJSGCE)and hope that the publication can enrich the readers’ experience .... [
Read More
]
What's New
2024-03-28
March 28th, 2024 News! Vol. 13, No. 1 has been published online!
2024-01-04
IJSGCE will adopt Article-by-Article Work Flow. For the quarterly journal, each issue will be released at the end of the issue month.
2023-10-09
October 9th, 2023 News! Vol. 11, No. 4 has been published online!
Home
>
Published Issues
>
2020
>
Vol. 9, No. 5, September 2020
>
Research on optimal dispatching model of clean energy generation grid-connected low-carbon power system based on system dynamics
Author(s): Zhang Tiancheng
Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
International Journal of Smart Grid and Clean Energy
, vol. 9, no. 5, September 2020: pp. 901-907
ISSN: 2315-4462 (Print)
ISSN: 2373-3594 (Online)
Digital Object Identifier: 10.12720/sgce.9.5.901-907
Abstract
: Considering the cost of carbon emission, an optimal dispatching model for low-carbon power system including thermal power, clean energy generation and energy storage facilities is established. Based on the theory of system dynamics, a dynamic model of carbon emission system is established. For hydro-thermal power systems, a hydro-electric peak-shaving model is established with the objective of minimizing the output adjustment of thermal power units and the system fuel consumption, and a hydro-electric peak-shaving model with the objective of maximizing the hydro-electric power generation and minimizing the system fuel consumption. The clean energy generator set is introduced into IEEE reliability testing system, and the grid connection scenarios of wind power, solar power generation, wind storage complementation and other clean energy power generation are selected to combine different carbon emission price levels. According to the simulation results, the different impacts of grid connection of clean energy power generation on low-carbon power system scheduling, emissions and operating costs are emphatically analyzed.
Keywords
: System dynamics, clean energy for power generation, low carbon power system, optimal scheduling, carbon emissions
Full Paper.pdf
Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
PREVIOUS PAPER
The investigation impact of variable installed capacity wind farm on the power system
NEXT PAPER
Integrated vs. total approach in short-term load forecasting