Home
Editorial Boards
Author Guide
Editor Guide
Reviewer Guide
Published Issues
journal menu
Aims and Scope
Article Processing Charge
Indexing Service
Open Access
Publication Ethics
Editorial Process
Contact Us
Copyright and Licensing
General Information
ISSN:
2315-4462 (Print); 2373-3594 (Online)
Abbreviated Title:
Int. J Smart Grid Clean Energy
Frequency:
4 issues per year
Editor-in-Chief:
Prof. Danny Sutanto
DOI:
10.12720/sgce
APC:
500 USD
Indexed by:
Inspec (IET),
CNKI
, Crossref, Google Scholar,
etc
.
Editor-in-Chief
Prof. Danny Sutanto
University of Wollongong, Australia
I am very excited to serve as the first Editor-in-Chief of the Journal of Smart Grid and Clean Energy (IJSGCE)and hope that the publication can enrich the readers’ experience .... [
Read More
]
What's New
2024-03-28
March 28th, 2024 News! Vol. 13, No. 1 has been published online!
2024-01-04
IJSGCE will adopt Article-by-Article Work Flow. For the quarterly journal, each issue will be released at the end of the issue month.
2023-10-09
October 9th, 2023 News! Vol. 11, No. 4 has been published online!
Home
>
Published Issues
>
2019
>
Vol. 8, No. 5, September 2019
>
Functionality assessment of concrete containing a dual-layer coated macro-encapsulated PCM
Author(s): Ehsan Mohseni, and Waiching Tang
School of Architecture and Built Environment, the University of Newcastle, Callaghan, NSW 2308, Australia
International Journal of Smart Grid and Clean Energy
, vol. 8, no. 5, September 2019: pp. 517-521
ISSN: 2315-4462 (Print)
ISSN: 2373-3594 (Online)
Digital Object Identifier: 10.12720/sgce.8.5.517-521
Abstract
: In this study, a structural lightweight concrete with function of indoor temperature control was developed by using thermal energy storage aggregates (TESA). TESA was made of porous structural lightweight aggregate (scoria) impregnated with liquid phase change material (PCM) and was coated with epoxy resins and mineral admixtures. TESA concrete mixes were prepared by substituting coarse aggregates with varying amounts of TESA. The properties of TESA concrete were investigated through thermal performance and water absorption analyses. The results concluded that the concrete with macro-encapsulated PCM can be used to improve the thermal performance of building, particularly during the summer the energy consumption for cooling can be significantly reduced. It was found that PCM in LWA was appropriately encapsulated and did not have negative impact on the properties. The coating materials covered the surface of porous aggregates significantly resulted in the reduction of permeability.
Keywords
: Dual-layer coating, Phase change Materials, Macro-encapsulation, Thermal energy storage aggregate
Full Paper.pdf
PREVIOUS PAPER
A new concept to improve the lithium plating detection sensitivity in lithium-ion batteries
NEXT PAPER
The performances of iron ore catalysts on low-temperature SCR of NO
x
with NH
3