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Abstract: In this paper, nineteen models were used to estimate the monthly average hourly global solar 

irradiation from the daily global irradiation value; at the “Cirque de Mafate” which is an isolated high 

mountain and rugged relief site in Reunion Island. These models are divided into three groups; the first 

depends on solar parameters like hour angle or solar time, the second implies that the estimation function 

follows a Gaussian distribution, and the third is a simplified form of the first.  The main target is to find, for 

the site, the best model to estimate the abovementioned monthly average hourly irradiation. The measured 

data used to validate the models are from an in situ weather station. The following statistical criteria; 

normalized mean bias error, normalized absolute mean bias error, normalized root mean square, 

t-statistical test, correlation coefficient, relative standard error and Nash-Sutcliffe Equation were used to 

evaluate the performance for each model. To rank and compare the nineteen models by the 

abovementioned seven criteria, the Multi-Criteria Decision Making (MCDM) approach has been used and 

especially the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS). The basic 

principle of TOPSIS is to define the ideal model and the worst model by the set of the statistical criteria’s 

value for all models. Then the Euclidian distance to the ideal model and/or the worst model is calculated. 

The best model is the one that is nearest the ideal model and farthest the worst model. To use the TOPSIS, a 

normalized weight, that indicates the importance or priority, for each statistical criterion has been 

calculated by objective and subjective way. As result, it was found that the best model came from the first 

group and it is the Collares-Pereira and Rabl model modified by Gueymard (CPRG) and in second position is 

the Gueymard model. 

 
Keywords: Clearness index, mean hourly irradiation from daily value, objective and subjective weight, 
Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS)

 
 

1. Introduction 

A solar PV smart grid was installed at Roche Plate in the “Cirque de Mafate”, at Reunion Island, Indian 

Ocean [1]. It is an isolated area in a high mountain, with rugged relief and accessible only by foot or 

helicopter. An Energy Management System (EMS) was implemented in the smart grid to manage in real time 

the user’s needs and available solar energy resources [2–4]. So, the estimation and/or prevision of the solar 

irradiation are important parts of this real time EMS, especially the hourly irradiation. A meteorological 
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station is also installed in situ to measure weather parameters and the global solar radiation on horizontal 

and titled plane. Seen that the PV solar smart grid is the best way to provide electricity for the population at 

Roche Plate, other smart grids are planned to be installed, and the experience from this first smart grid will 

be used to develop the others, particularly the EMS. The aim of this paper is first to study the main features 

of solar irradiation in a high mountain and rugged relief site like the Cirque of Mafate, and then to find, 

among the existing, the best model to estimate the ratio of the mean hourly and daily irradiation that is, as 

shown above, a key parameter for the EMS. The data collected, by in situ weather station, from March 2020 

to August 2022 were used to validate the models [5]. Nineteen models from the literature have been applied, 

and the performance of each model was evaluated by seven statistical criteria. So to rank nineteen models 

by seven criteria, the Multi-Criteria Decision Making (MCDM) approach has been used especially the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The main constraint when using 

MCDM approach is that a normalized weight should be assigned to the different criteria according to their 

relative importance between them. In this work, objective methods (entropy and CRITIC) and subjective 

weighting methods (Analytic Hierarchy Process) are used together. The knowledge of the principal features 

of solar irradiation will help in the future for the design of a new model which better corresponds to the 

present site. This paper will be divided into eight parts; after the introduction, the second part is for site 

presentation, then the third is a literature review about the hourly radiation models and the statistical 

criteria. The fourth part is for MCDM method by TOPSIS with the weighting. The fifth is for the final 

methodology for this work, followed by the results, discussion and conclusion.  

2. Site Presentation and Database 

Fig. 1 gives the geographical location of the site and GPS coordinates are −21.06953° S, 55.406328° E. It is 

an isolated area in a high mountain place, accessible only by foot or helicopter.  

 

 
Fig. 1. Geographical location of the Roche Plate, Cirque de Mafate. 

 
(a)                                           (b) 

Fig. 2. Topographic parameters: (a) sun path and horizon relief mask, (b) relief satellite view. 
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Fig. 2 shows the sun path, horizon mask and, by satellite view, the relief around. This latter is very rugged. 

On the west side, there is a near high mountain wall as a mask relief. Fig. 2 was extracted from the website: 

www.globalsolaratlas.com. 

The database is obtained from in situ weather station that measures the global solar radiation G in 

kW/m2 every 20 seconds [5]. Then the hourly irradiation 
hI  and the daily irradiation 

hH  in kWh/m² are 

calculated. The following main astronomical data were calculated by the Michalsky’s algorithm [6]:  

 solar azimuth azs, elevation  and declination  angle, in degree 

 hourly angle , sunrise o  and sunset s  angle, in degree  

 sun-earth distance correction factor   

 the hourly ohI  and daily ohH  extraterrestrial irradiation on a horizontal plane in (kWh/m²)  

According to Refs. [7] and [8], the hourly data that satisfy the following criteria were selected for the 

study 

ohh II 9.00                                          (1) 

ohh HH 8.00                                           (2) 

and the last test in this paper is for solar elevation angle 

 > 0                                             (3) 

To calculate the hourly irradiation value at a given h hour, radiation data from h−30 min to h+30 min were 

used. Seen that the area is in a tropical site, the hourly data are mainly for 06:00 to 18:00. After that, the 

mean of hourly irradiation I, daily irradiation H and extraterrestrial irradiation H0 in kWh/m² were 

calculated. These mean values can be monthly, annual, for austral winter, and austral summer. 

3. Literature Review of Hourly Irradiation Models and Statistical Criteria 

The goal is to estimate the ratio r of the mean hourly irradiation and the mean daily value of irradiation 

H

I
r =                                             (4)  

The existing models can be divided into three groups; the first calculates the ratio r as a function of the 

hour angle  or solar time ts, and other solar parameters. The second, which is a function of the solar time ts 

only, implies that the weather conditions are random and the ratio follows a Gaussian distribution. The last 

is a simplified form of the first, and the ratio is a function of time only and does not take into account other 

solar parameters nor the randomness of solar radiation. Table 1 gives the models on the first group. Tables 

2 and 3 are respectively for second and third group.  

For the first group, the first model is the Whillier [9] model which was simplified by the Liu and Jordan 

[10] model. This latter whose notation is r0 in Table 1 is the base of all other models except the Kaplanis 

model. Then Garg & Garg model [11] and Collares-Pereira and Rabl (CPR) model were built based on Liu 

and Jordan [10] model r0. Gueymard improved the CPR model to get the Collares-Pereira and Rabl modified 

by Gueymard model (CPRG). After that, Gueymard built also his own model, always based on r0. The last 

model is the Kaplanis model which does not depend on r0. 

For the second group in Table 2, the ratio fits a Gaussian curve and the variable is the true solar time ts. 

The standard deviation is 




2

1

12r
=                                          (5) 
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H

tI
r s )12(

12

=
=                                           (6) 

r12 is the ratio of the hourly and the daily irradiation at noon solar time. The first model was Jain 1 that was 

improved by Baig 1, and this latter was improved also by Shazly 1. If r12 is unknown, the standard deviation 

is related to the day length S. Jain, Baig and Shazly proposed formulas for their models, to get   from S 

(Jain 2, Jain 3, Baig 2, Shazly 2). Then Kaplanis also, proposed two formulas to get  from S for Jain and Baig 

model based on the Gaussian distribution characteristics (Jain 4, Jain 5, Baig 3, Baig 4). 

 
Table 1. The First Group’s Models 

Model Formula Reference 

Whillier 


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

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=

s
s

s
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Liu & Jordan 
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






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180
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sr
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CPR 

( )cosbarCPR += 0r  
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CPRG 
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
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Kaplanis 
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sst , is the sunset solar time, the equations to get   and  are 
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H is the irradiation for the day 

[15] 
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Table 2. The Second Group’s Models 
Model Formula Reference 

Jain 1 
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[19] 

 

And in the third group, there is only one model that is the Newell model as seen in Table 3.  

 

Table 3. The Third Group’s Model 
Model Formula Reference 

Newell 
( )


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


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−=
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Table 4 gives the statistical criteria commonly used in the literature [7, 21, 22]. 

ims is the i-th measured value, 
ams  is the average value of all 

ims  . 

ic  is the i-th calculated value, 
ac  is the average value of all

ic . 

on  is the number of measurement points. 
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An important aspect is to define for each criterion the best value, i.e. the value towards which the 

criterion must tend for the best model according to this criterion. If the best value is 1 or the highest as 

possible, the criterion is called a benefit criterion. If the best value is 0 or the lowest as possible, the 

criterion is called a cost criterion.  

Table 4. The Statistical Analysis Crteria 
Criterion Formula Best value 
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( )

( )


=

=

=

=

−

−

−=
0

0

1

2

1

2

1
ni

i

ai

ni

i

ii

msms

cms

NSE
 

1 

Correlation coefficient R 

( )( )

( ) ( ) 







−








−

−−

=





=

=

=

=

=

=

00

0

1

2

1

2

1

ni

i

ai

ni

i

ai

ni

i

aiai

msmscc

msmscc

R

 

1 

Relative Standard Error (RSE) 

0

1

2
0

n

ms

msc

RSE

ni

i i

ii
=

=









 −

=  
0 

Mean Bias Error (MBE) ( )
=

=

−=
0

10

1 ni

i

ii msc
n

MBE  
0 

Normalized Mean Bias Error (NMBE%) 
am

MBE
NMBE 100% =

 
0 

Mean Absolute Bias Error (MABE) 
=

=

−=
0

10

1 ni

i

ii msc
n

MABE
 

0 

Normalized Mean Absolute Bias Error 

(NMABE%) am

MABE
NMABE 100% =

 
0 

Root Mean Square Error (RMSE) ( )
=

=

−=
0

1

2

0

1
ni

i

ii msc
n

RMSE
 

0 

Normalized Root Mean Square Error 

(NRMSE%) am

RMSE
NRMSE 100% =

 
0 

t-stat 
( )

22

2

0 1

MBERMSE

MBEn
statt

−

−
=−  0 

4. The MCDM Method by TOPSIS 

The Multi-Criteria Decision Making (MCDM) is a method to rank m models by n criteria. There are several 

MCDM methods and the one that is used here is the Technique for Order Preference by Similarity to Ideal 

Solution or TOPSIS [23–25]. The goal of the TOPSIS is to identify the ideal model called here Positive Ideal 

Model and the opposite that is the worst model called the Negative Ideal Model. Then, the Euclidian 

distance between the PIM and NIM is calculated for each model. The best model is the one that is nearest 

the PIM and farthest the NIM. The different steps in TOPSIS are like the following. 

4.1. Steps for TOPSIS procedure 

a) Build the (m,n) decision matrix ( )nmdm *
with m rows for the models or methods, and n columns for the 

criteria. So ( )jidm , represents the value of the jth criterion for the ith model 
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b) Normalize the dm matrix to obtain r matrix as 


=

=

=
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i ij
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r

1
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                                     (8) 

c) Build the vector w containing the weight of each criterion 

( )nwwww ,...,, 21= , 0jw and 
=

=
=

mi

i jw
1

1                     (9) 

The weighting method will be fully explained on the next paragraph 

d) Compute the weighted normalized decision matrix v 

vij = wj × rij for i=1,2,...,m and j=1,2,...,n                         (10) 

e) For each column of v find the best and the worst value according to the criterion. The best values will 

be the component of the PIM and the worst values the component of NIM.  

( )+++= nvvvPIM ,...,, 21
 and ( )−−−= nvvvNIM ,...,, 21

                     (11) 

If the j-th criterion is a benefit criterion 

ijij vv max=+
 and ijij vv min=−

                           (12a) 

Otherwise, if the j-th criterion is a cost criterion 

ijij vv min=+
 and ijij vv max=−

                            (12b) 

f) From each model compute the Euclidian distance from PIM (D+) and NIM (D-). 
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0

1
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g) Then the model’s relative closeness to the NIM and PIM is 
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+
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i
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D
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+
=
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i
i
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D
rcp                                (14) 

h) Finally, the ranking from best to worst is in decreasing order if rcn is used (the best is the farthest NIM), 

or in increasing order if rcp is used (the best is nearest PIM).  

4.2. Weighting methods 

An important part of the MCDM is the weighting method where some coefficients of importance are given 

for each criterion. The weights are normalized, so their sum for all the criteria is 1 according to relation 

Eq. (9). There are two basic methods, the subjective and the objective. For the subjective one, the weighting 

depends on the experience and human decision. For objective method, the weight depends only on the 

numerical data in the decision matrix. On this study, these two methods are used and combined together. 
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For the subjective method, the simplest way is the Rank Sum or Rank Exponent method [26], when the 

decision maker gives a hierarchy or sorts by high importance to low the criteria, then the rank of each 

criterion is converted to a normalized weight. But the subjective method that allows more analyze between 

criteria is the Analytic Hierarchy Process (AHP).  

For the objective method, the weight of each criterion depends on the dispersion of the model’s value for 

this criterion. If for a criterion, the values from the different models are much closer together, there is a little 

information to differentiate the models, so the weight of this criterion is lower. And in the opposite, if the 

dispersion value for the criterion is high, the models are sufficiently spaced apart from each other, so there 

is enough information to differentiate them, and the weight for this criterion is higher. The first basic 

objective methods are the standard deviation and variance method, where the normalized weight is equal 

to the standard deviation or variance value for the criterion divided by the sum of all standard deviation or 

variance of all criteria [26]. The usual objective methods are the entropy method to evaluate the diversity of 

information inside the data set, and the CRiteria Importance Through Inter-Criteria (CRITIC) method, that 

also analyses the correlation between criteria, through the dispersion. 

4.3. The Analytic Hierarchy Process (AHP) 

The decision maker compares criteria in pairs, to determine whether they are significantly different from 

one another [26, 27]. This comparison gives a M(n*n) matrix called judgment matrix as shown in the Table 5 

for an example with five criteria. 

 

Table 5. Example of Judgment Matrix for Five Criteria 
 c1 c2 c3 c4 c5 

c1 1 1/3 1/9 1/5 1/4 

c2 3 1 1 1 1 

c3 9 1 1 3 1 

c4 5 1 1/3 1 2 

c5 4 1 1 1/2 1 

 

Mij is the comparison between criteria ci and cj. If criterion ci has more importance than criterion cj , an 

integer number called intensity value, between 1 to 9 is given to Mij . The diagonal of the judgment matrix is 

always 1, and 

ji

ij
M

M
1

=                                        (15) 

On the example above, the criterion c1 has the lowest importance than other criteria. Criterion c3 is more 

important than c4. Criterion c4 is more important than c5, and c3 has an equal importance to c5. Criterion c2 

has an equal importance to c3, c4, and c5. For the jth criterion the normalized weight is 

( )
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=
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==
nl
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1                                  (16) 

To validate the result, a parameter named Consistency Ratio (CR) should be calculated and its value 

should be lower than 0.1. To compute CR, the following step should be followed. 

Compute the n dimensional vector  


=

=

=
nj

j

jij

i

i wM
w 1

.
1

                                   (17) 
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If the mean value of  is inferior to n, there are errors in the previous calculation. If not, another 

parameter called Consistency Index (CI) is calculated by 

1

)(

−

−
=

n

nmean
CI

                                     (18) 

Then, the Random Index (RI) parameter is found inside the Table 6 below. 

 

Table 6. Random Index Table 
n RI 

1 0.00 

2 0.00 

3 0.58 

4 0.90 

5 1.12 

6 1.24 

7 1.32 

8 1.41 

9 1.45 

10 1.49 

11 1.51 

12 1.54 

13 1.56 

14 1.57 

15 1.59 

 

Finally, the consistency ration CR is given by 

RI

CI
CR =                                          (19) 

If CR < 0.1, the result is acceptable, otherwise the judgment matrix should be revisited. 

4.4. The objective entropy weighting 

The start is again the decision matrix dm(m×n) with m rows for the models and n columns for the criteria, 

the normalized matrix p is [25, 27, 28]: 


=

=

=
mi

i

ij

ij

ij

dm

dm
p

1

,  i=1,2,..,m  and  j=1,2,..,n                      (20) 

The entropy information of the jth criterion is 


=

=

−=
mi

i

ijijj pp
m

e
1

)ln(.
)ln(

1
                               (21) 

The degree of diversity of the information involved in the jth criterion is 

jj ed −=1                                         (22) 

And the weight for the jth criterion is 
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
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4.5. The Criteria Importance Through Inter-Criteria (CRITIC ) method 

This method, takes also into account the correlation between criteria. First, the decision matrix is 

normalized to get the  matrix [26, 29]. 

minmax
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=                                 (24) 

for benefit criteria and 
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−

−
=                                 (25) 

for cost criteria  

maxjdm , is the highest value for the jth criterion, and minjdm is the lowest value. 

The correlation matrix cr (that is an n square matrix) between criteria is: 
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with j the mean value of the jth column  

The weight per criterion is 
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where j is the standard deviation of the jth criterion. 

4.6. Combination of objective and subjective weight 

Subjective and objective weighting have their advantages and inconveniences. They should be combined 

in order to get a weight that reflects the subjective and objective behavior [30–32]. The objective weight 

also can be the fusion of two objective weights like CRITIC and entropy, to take into account the data 

dispersion and correlation between criteria.  

If wej and wcrj represent respectively the entropy and CRITIC weight for the j-th criterion, the objective 

weight woj for this criterion is: 


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                                  (28) 

Then, if wsj is the subjective weight, the combination of subjective and objective weighting is to find a and 

b numbers to minimize 
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with the constraints, a+b =1, and a > 0, b > 0                                                  (29b) 
Then, the final objective and subjective combined weight will be 

     wj = a∙woj + b∙wsj                                    (30) 

5. The Methodology of the Present Study 

The proposed method in this study can be summarized as follows: 

a) From the data base, the hourly (from 06:00 to 18:00) irradiation and daily irradiation for each day 

were calculated. Only the data that satisfy relations Eqs. (1), (2), and (3) will be retained for the study. 

b) Then the averaged value of hourly irradiation (from 06:00 to 18:00) and daily irradiation were 

calculated for fifteen averaging periods; the twelve months of the year, the austral summer season 

(November to April), the austral winter season (May to October) and finally the annual averaging. 

c) Apply the nineteen models for the fifteen averaging period to get the calculated data. 

d) In order to use normalized value as possible, the seven following criteria were chosen and calculated: 

NMBE%, NMABE%, NSE, R, RSE, NRMSE% and t-stat. 

e) Compute the subjective weight by AHP method. According to the study of the hourly irradiation based 

on daily value for Jiading Campus of Tongji University China detailed in [8], the following hierarchy 

respectively from high to low was used: NSE, R, RSE, MBE, MABE, RMSE and t-stat at last. But in [8] there 

was neither calculation of criteria’s weight nor use of TOPSIS method. Wan Nik et al. [33] did the same 

study for three sites in Malaysia with MABE, MBE, RMSE and t-stat as criteria but without specifying any 

importance between criteria. Similar work was done also as detailed on Ref. [34] for Çanakkale in Türkiye 

with only NMBE%, NRMSE%, R and t-stat as criteria but without weighting or any other MCDM method.  

So, for the present work, based on [8], the hierarchy in descending order is like the following; in first 

position from high to low are NSE, R, and RSE. In middle position there are NMBE%, NMABE%, NRMSE%, 

and t-stat at the end. For middle position, NMABE% and NRMSE% have equal importance. The status of 

NMBE% in front of the couple (NMABE% and NRMSE%) will depend later on the results data. At this stage 

the initial judgment matrix will be like in Table 7. 

f) Compute the objective weight by the algorithm in Fig. 3. 

g) With the subjective and objective weight, compute the final weight with the algorithm in Fig. 3. 

h) Apply the TOPSIS method, and then by relative closeness to the NIM, rank in descending order the 

nineteen models for the fifteen periods. The Fig. 3 below shows the summary of algorithm to compute the 

final weight of each criterion. 

 

Table 7. Initial judgment matrix 
 NSE R RSE NMBE% NMABE% NRMSE% t-stat 

NSE 1 2 3 3 3 3 5 
R 1/2 1 2 3 3 3 5 

RSE 1/3 1/2 1 2 3 3 5 
NMBE% 1/3 1/3 1/2 1 X X 5 

NMABE% 1/3 1/3 1/3 X 1 1 5 
NRMSE% 1/3 1/3 1/3 X 1 1 5 

t-stat 1/5 1/5 1/5 1/5 1/5 1/5 1 

 

X will be filled with proper value after the results of data analyze. 
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Fig. 3. Algorithm to compute integrated weight (subjective and objective). 

6. Results 

6.1. Plot of the measured and calculated irradiation values 

In order to avoid visual confusion, only some representative models are plotted. Fig.4. gives the plot for 

the annual average 

 
Fig. 4. Hourly measured and calculated values for a representative day of the year. 

compute entropy weight 

wej 

compute CRITIC weight 

wcrj 

compute objective weight 


=

=

=
nj

j crjej

crjej

oj

ww

ww
w

1
.

.  

 

 
 

Calculate the criteria’s subjective weight wsj  

𝑤𝑠𝑗  

Calculate the CR ratio 

 

CR < 0.1 ? 

 

compute the integrated weight wj 

  by finding a and b to minimize 

( ) 0,0,1..
1

2
=+−

=

=

babawithwbwa
nj

j

sjoj

  

wj = a∙woj + b∙wsj 
 

 

yes 

 

no 

Fill the judgment matrix by pair wise 

comparison of the criteria. (AHP method) 

 

START 

Enter the NSE, R, RSE, NMBE%, 

NMABE%, NRMSE% and t-stat value for 

each model  

 

Build the (19×7) decision 

matrix 
Build the (7×7) judgment 

matrix 

END 

International Journal of Smart Grid and Clean Energy

76 Volume 13, Number 3, 2024



  

Theoretically, for a clear sky day, the irradiation curve versus time should be bell-shaped with symmetry 

on the morning and afternoon with respect to noon solar time, and of course the maximum is also at noon 

solar time, when the sun is at its highest elevation. For the present results, for the annual average, by the 

Fig. 4, the curve of the measured values is bell-shaped as expected, but there is no symmetry between 

morning and afternoon with respect to noon solar time. The maximum is at 11 h solar time. This shift of the 

maximum (from noon solar time to 11 h solar time) makes that for all models; there are underestimation in 

the morning and overestimation in the afternoon. Fig. 5 is for the month of June and the winter season 

average. 

        (a)          (b)     

Fig. 5. Measured and calculated hourly mean irradiation: (a) month of June, (b) winter season. 

 

For the month of June and winter season averaging, even the asymmetry between morning and afternoon 

is still there, it is more reduced than for the annual average. The maximum is still at 11 h solar time, but 

practically one can assume that the maximum value holds from 11 h to noon solar time. Fig. 6 shows the 

same kind of plot for the month on November and the austral summer season 

 
       (a)          (b)     

Fig. 6. Measured and calculated hourly mean irradiation: (a) month of November, (b) summer season. 

 

By Fig. 6, for the month of November and the austral summer season, the asymmetry between morning 

and afternoon with respect to noon solar time, for the measured value, is emphasized with the maximum 
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always at 11 h solar time. For all models and all months there is underestimation on the morning and 

overestimation on the afternoon.  

6.2. Plot of the hourly clearness index 

The clearness index kt is the ratio of the hourly irradiation and the extraterrestrial hourly irradiation. It 

can be used as indicator of the cloud coverage and the maximal value is 1.  

 If kt >0.6, it is a clear sky  
 If 0.3 < kt  0.6 it is a partly cloudy sky 
 if 0  kt  0.3 it is an overcast sky 

Fig. 7 gives the plot, for annual average, of kt and Fig. 8 for austral summer and winter season. On the plot, 

red markers are for time before noon solar time, blue markers for afternoon and black marker for noon 

solar time.  

 
Fig. 7. The hourly clearness index for the representative day of the year. 

 

So for the annual averaging, on the morning, it is a clear sky from 8h to noon with the maximum at 10 h. 

Since 11 h kt is decreasing, and the afternoon becomes cloudier and cloudier. From 16 h, kt<0.3 , but it is not 

only from the cloud, but also from the relief mask on the west side which obscures the direct solar beam 

radiation from 16 h around, as it can be deduced from Fig. 2.   

 
     (a)           (b)     

Fig. 8. The hourly clearness index: (a) summer season, (b) winter season. 

 

The behavior of the curve for winter and summer season is the same as for the annual averaging. For the 
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summer, the clear sky is between 8 h and 11 h, with the maximum at 9h. From 10 h, kt starts to decrease 

because of rising of cloud coverage as time passes. At noon solar time, it is already a partly cloudy sky. 

Around 16 h the effect of the cloud coverage is combined with the effect of the relief mask. For winter 

season, there is a clear sky in the morning until 13 h, with maximum at 10 h. Then from 11 h, the cloud 

coverage starts to decrease the clearness index, and in the afternoon, the effect of the relief mask overlaps 

on the cloud cover. 

6.3. For the statistical indicators 

Due to lack of room and not to make the reading cumbersome, only the tables showing the result for 

annual average, winter, and summer season will be shown in Tables 8, 9, and 10. For the twelve months, the 

results are given inside figures. 

 

Table 8. Model’s Statistical Indicators for Annual Average 
year NSE R RSE NMBE(%] NMABE(%) NRMSE(%) t-stat 

Whillier 0.806 0.937 0.946 −0.465 22.77 24.92 0.059 
Liu&Jordan 0.807 0.937 0.950 −0.179 22.68 24.85 0.023 

CPR 0.861 0.938 0.663 −0.829 19.25 21.08 0.124 
CPRG 0.863 0.938 0.672 0.006 19.18 20.92 0.001 

G&G 0.811 0.939 0.936 −0.079 22.48 24.61 0.010 
Gueymard 0.862 0.938 0.682 −0.000 19.28 21.02 0.000 

Jain1 0.857 0.929 0.611 −3.259 18.17 21.37 0.488 
Jain2 0.847 0.932 0.712 −4.169 19.42 22.13 0.607 

Jain3 0.845 0.932 0.723 −4.271 19.54 22.25 0.618 
Jain4 0.803 0.935 0.894 −6.164 22.46 25.09 0.801 

Jain5 0.812 0.934 0.865 −5.805 21.82 24.49 0.771 
Baig1 0.875 0.937 0.572 1.557 17.77 20.03 0.247 

Baig2 0.865 0.938 0.604 −1.550 18.73 20.75 0.237 
Baig3 0.829 0.938 0.655 −6.193 20.84 23.40 0.868 

Baig4 0.837 0.938 0.646 −5.380 20.28 22.83 0.767 
Shazly1 0.868 0.938 0.691 3.767 18.46 20.53 0.590 

Shazly2 0.852 0.938 0.723 −1.427 19.81 21.76 0.208 
Newell 0.761 0.934 1.108 −0.293 25.11 27.65 0.034 

Kaplanis 0.807 0.937 0.950 −0.179 22.68 24.85 0.023 

 

Table 9. Model’s Statistical Indicators for Winter Season 
winter NSE R RSE NMBE(%] NMABE(%) NRMSE(%) t-stat 

Whillier 0.856 0.958 1.129 0.001 20.55 23.08 0.000 

Liu & Jordan 0.857 0.958 1.135 0.33 20.44 23.00 0.045 

CPR 0.907 0.962 0.759 −0.61 16.73 18.55 0.105 

CPRG 0.909 0.962 0.770 0.28 16.63 18.35 0.048 

G & G 0.859 0.960 1.117 0.43 20.24 22.79 0.059 

Gueymard 0.905 0.962 0.804 0.28 16.88 18.68 0.048 

Jain 1 0.901 0.953 0.851 −2.65 16.20 19.07 0.444 

Jain 2 0.889 0.956 1.025 −3.51 17.62 20.25 0.557 

Jain 3 0.888 0.956 1.036 −3.57 17.70 20.36 0.564 

Jain 4 0.850 0.959 1.278 −5.06 20.92 23.49 0.698 

Jain 5 0.859 0.958 1.232 −4.75 20.25 22.80 0.674 

Baig 1 0.921 0.961 0.556 1.07 14.90 17.04 0.199 

Baig 2 0.912 0.961 0.621 −1.99 15.98 18.01 0.352 

Baig 3 0.880 0.962 0.717 −6.16 18.53 21.02 0.970 

Baig 4 0.888 0.962 0.699 −5.38 17.93 20.34 0.868 

Shazly 1 0.916 0.961 0.741 3.53 15.63 17.62 0.647 

Shazly 2 0.896 0.962 0.827 −2.18 17.50 19.63 0.353 

Newell 0.819 0.954 1.327 0.35 22.77 25.86 0.043 

Kaplanis 0.857 0.958 1.135 0.33 20.44 23.00 0.045 
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Table 10. Model’s Statistical Indicators for Summer Season 
summer NSE R RSE NMBE(%] NMABE(%) NRMSE(%) t-stat 

Whillier 0.832 0.932 1.191 −0.10 25.47 28.90 0.012 

Liu&Jordan 0.833 0.932 1.192 0.15 25.39 28.83 0.018 
CPR 0.871 0.939 0.761 −0.61 21.80 25.33 0.084 

CPRG 0.872 0.939 0.770 0.10 21.75 25.20 0.014 
G&G 0.836 0.934 1.203 0.27 25.20 28.55 0.033 

Gueymard 0.873 0.939 0.765 0.10 21.71 25.17 0.014 
Jain1 0.862 0.932 1.648 −1.80 21.89 26.22 0.238 

Jain2 0.854 0.934 1.942 −2.29 23.33 26.95 0.296 
Jain3 0.852 0.935 1.989 −2.38 23.55 27.12 0.305 

Jain4 0.815 0.938 2.641 −3.78 27.06 30.38 0.434 
Jain5 0.822 0.937 2.536 −3.52 26.30 29.75 0.413 

Baig1 0.880 0.939 0.531 1.45 19.95 24.48 0.206 
Baig2 0.874 0.939 0.586 −1.30 21.06 25.09 0.180 

Baig3 0.845 0.938 0.805 −5.84 23.24 27.77 0.745 
Baig4 0.851 0.938 0.762 −5.09 22.64 27.21 0.660 

Shazly1 0.875 0.939 0.731 3.98 21.13 24.93 0.560 
Shazly2 0.866 0.938 0.888 −0.25 22.50 25.83 0.034 

Newell 0.797 0.923 1.465 0.18 28.36 31.80 0.020 
Kaplanis 0.833 0.932 1.192 0.15 25.39 28.83 0.018 

 

For twelve degrees of freedom, the t-stat value should be lower than 2.7188 at 95% level of confidence to 

validate the model. This condition is satisfied for all models and for all averaging period including each 

individual month.  

Fig. 9, at the left, shows the plot of the NMBE% per month. The best models are those which NMBE% 

value tends to zero or the point per point curve is getting closer to the horizontal axis (NMBE% = 0). The 

models from the first group are those which curve is near the horizontal axis and their curves have the 

same behavior. Fig. 9, at the right, shows also a zoom window around the horizontal axis, it can be seen that, 

in general, the Whillier [9] model is very near the horizontal axis, immediately after are CPRG and 

Gueymard, then Liu and Jordan [10], Garg and Garg [11], and CPR which is the farthest (compared to the 

other first group). But CPRG and Gueymard are the best for March, September and October. Models from the 

second group have the worst (highest) value of NMBE%.  

 
(a)          (b) 

Fig. 9. Plot of NMBE% versus month: (a) general scope, (b) zoom window around horizontal axis. 

 

The value of the NMBE% for the first group can be very low. Table 9 shows that the NMBE% value for 

Whillier model is 0.001% for winter season. This latter as a first approach is an indication of a very good 

estimate, but as it will be seen afterward, it is not a sufficient condition. Fig. 10 gives the plot of NMABE% 

and NRMSE%, the more the value is low towards zero, better the model is. Models on the second group are 
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the best here, especially Baig 1, Shazly 1, and Baig 2. A set of best models can be built, this set includes the 

following models, respectively with a hierarchy from top to down; Baig 1, Shazly 1, Baig 2, CPRG, Gueymard 

and CPR. Fig. 10 shows that these six models are near each other. The other models have higher percentage 

errors than the best set, especially Whillier [9], Liu and Jordan [10], and Garg and Garg [11] are the worst. 

The minimum for NMABE% and NRMSE%, especially for the best set, is for the month of July. Figs. 9 and 10 

seem to be in opposition, because the model that has the lowest NMBE% has the highest NMABE% and 

NRMSE%. The reason is that for NMBE%, the sum of underestimation can be canceled or balanced by the 

sum of overestimation, which is not possible for NMABE% and NRMSE% because of the sum of absolute 

value or the square.  

  
   (a)          (b)     

Fig. 10. Plot of NMABE% and NRMSE% versus month: (a) NMABE%, (b) NRMSE%. 

 

So, in order to finish the filling of the judgment matrix, the decision from this work is to give more 

importance to NMABE% and NRMSE% than NMBE% by factor 2. Fig. 11 gives the plot of RSE; the best 

model is whose with lowest RSE value towards to zero. The best models are in the second group model, 

especially Baig 1. Here also, a best set can be built with Baig 1, Baig 2, Shazly 1, CPR, CPRG, Gueymard, and 

Shazly 2. The other models have too much higher value than the best set. The minimum for the best set 

models is for the month of June. The maximum is for November. 

 
Fig. 11. Plot of RSE versus month. 
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Fig. 12 gives the plot for NSE and R. For these criteria the value of the best model should tend to 1. For 

NSE, the following models, in descending importance, form the best set: Baig 1, Shazly 1, Baig 2, CPRG, CPR 

and Gueymard. This ranking must not obscure that these models are near each other. The NSE value for the 

other models is clearly lower than the above mentioned set. For R, the values for all models are very near 

each other so the curves are like merging. The maximum is for the month of July.  

     (a)          (b)     

Fig. 12. Plot of NSE and R versus month: (a) NSE, (b) R. 

 

Finally Fig. 13, at the left, shows the plot of t-stat and at right a zoom window around the horizontal axis. 

The best models are those which t-stat value tends to zero or the point per point curve is getting closer to 

the horizontal axis (t-stat = 0). Like for NMBE%, the models from the first group are the best. In general, 

Whillier model has the lowest t-stat, and then, there are in decreasing order; CPRG, Gueymard, Liu and 

Jordan [10], Garg and Garg [11], and CPR. Models from second group have highest value of t-stat. CPRG and 

Gueymard are the best for the month of March, September, and October.  

 
     (a)          (b)     

Fig. 13. Plot of t-stat versus month: (a) general scope, (b) zoom around horizontal axis. 

6.4. Results of the TOPSIS method 

Table 11 gives the final judgment matrix for the subjective AHP weight, where the hierarchy between 

NMBE%, NMABE%, and NRMSE% was posed.  
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Table 11. Final Judgment Matrix 
 NSE R RSE NMBE% NMABE% NRMSE% t-stat 

NSE 1 2 3 3 3 3 5 
R 1/2 1 2 3 3 3 5 

RSE 1/3 1/2 1 2 3 3 5 
NMBE% 1/3 1/3 1/2 1 1/2 1/2 5 

NMABE% 1/3 1/3 1/3 2 1 1 5 
NRMSE% 1/3 1/3 1/3 2 1 1 5 

t-stat 1/5 1/5 1/5 1/5 1/5 1/5 1 

 

After calculation, the subjective weights are in Table 12 with CR that is lower than 0.1. 

Table 12. Subjective Weight and CR by AHP Method  

NSE R RSE NMBE NMABE NRMSE t-stat CR 

0.295 0.221 0.168 0.082 0.101 0.101 0.031 0.062 

 

Table 13 shows the objective entropy weight. 

Table 13. Objective Entropy Weight  
Entropy NSE R RSE NMBE(%] NMABE(%) NRMSE(%) t-stat 

Year 0.001 4.08E-06 0.018 0.490 0.004 0.004 0.483 

Summer 0.0003 7.60E-6 0.096 0.451 0.004 0.002 0.447 

Winter 0.0005 4.44E-06 0.034 0.480 0.007 0.007 0.471 

Jan 0.0006 7.04E-06 0.034 0.476 0.006 0.004 0.480 

Feb 0.0003 7.62E-06 0.084 0.455 0.005 0.003 0.452 

March 0.0003 0.00002 0.296 0.348 0.003 0.002 0.351 

April 0.0005 3.47E-06 0.029 0.485 0.006 0.005 0.475 

May 0.0005 7.27E-06 0.070 0.446 0.010 0.010 0.463 

June 0.0003 6.15E-06 0.116 0.426 0.010 0.010 0.438 

July 0.0004 5.41E-06 0.084 0.441 0.020 0.014 0.440 

Aug 0.0005 0.000005 0.037 0.477 0.009 0.007 0.469 

Sept 0.0007 6.32E-06 0.024 0.484 0.009 0.007 0.474 

Oct 0.0003 0.00001 0.112 0.443 0.003 0.002 0.440 

Nov 0.0005 6.74E-06 0.049 0.472 0.005 0.004 0.470 

Dec 0.0004 0.00001 0.033 0.481 0.003 0.002 0.481 

 

By Table 13, for entropy way, NMBE% and t-stat have the highest weight. It means that these criteria have 

the highest dispersion data value. The CRITIC weights are in Table 14. 

Table 14. Objective CRITIC Weight  
CRITIC NSE R RSE NMBE(%] NMABE(%) NRMSE(%) t-stat 

Year 0.035 0.005 0.216 0.045 0.026 0.024 0.649 

Summer 0.017 0.005 0.580 0.025 0.018 0.015 0.341 

Winter 0.028 0.004 0.245 0.039 0.023 0.024 0.638 

Jan 0.027 0.005 0.363 0.037 0.026 0.022 0.520 

Feb 0.018 0.005 0.549 0.027 0.021 0.016 0.363 

March 0.009 0.005 0.790 0.014 0.009 0.009 0.164 

April 0.031 0.004 0.225 0.044 0.025 0.024 0.646 

May 0.021 0.004 0.354 0.031 0.019 0.021 0.551 

June 0.016 0.003 0.394 0.026 0.016 0.018 0.527 

July 0.017 0.003 0.387 0.025 0.019 0.019 0.529 

Aug 0.027 0.004 0.296 0.036 0.024 0.024 0.589 

Sept 0.034 0.006 0.234 0.039 0.030 0.026 0.632 

Oct 0.014 0.005 0.716 0.018 0.013 0.012 0.223 

Nov 0.021 0.004 0.514 0.027 0.023 0.019 0.391 

Dec 0.028 0.007 0.370 0.042 0.031 0.021 0.502 
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By Table 14, there are RSE and t-stat that have the highest weight when the correlation between criteria 

is also taken into account. Then, Table 15 gives the final weight of the seven criteria by the algorithm of Fig. 

3. 

Table 15. Final Weight  
w NSE R RSE NMBE(%] NMABE(%) NRMSE(%) t-stat 

Year 0.235 0.176 0.136 0.078 0.081 0.081 0.213 
Summer 0.207 0.156 0.193 0.073 0.071 0.071 0.228 
Winter 0.234 0.176 0.139 0.076 0.081 0.081 0.214 

Jan 0.231 0.173 0.141 0.078 0.080 0.079 0.218 
Feb 0.212 0.159 0.179 0.074 0.073 0.073 0.229 

March 0.208 0.156 0.350 0.062 0.072 0.072 0.079 
April 0.234 0.176 0.137 0.078 0.081 0.080 0.214 
May 0.228 0.171 0.149 0.074 0.078 0.078 0.221 
June 0.220 0.165 0.166 0.071 0.076 0.076 0.227 
July 0.224 0.169 0.156 0.072 0.078 0.077 0.224 
Aug 0.233 0.175 0.140 0.076 0.080 0.080 0.216 
Sept 0.235 0.176 0.137 0.077 0.081 0.081 0.213 
Oct 0.195 0.146 0.257 0.069 0.067 0.067 0.199 
Nov 0.223 0.168 0.155 0.076 0.077 0.077 0.225 
Dec 0.230 0.173 0.141 0.080 0.079 0.079 0.218 

 

The seven criteria can be divided in two classes. The first class that has the highest weight includes NSE, 

t-stat, RSE and R. The second that has the lowest weight contains NMABE%, NRMSE% and NMBE%. This 

result shows the integration of subjective and objective weight, because, t-stat is the last priority from 

subjective way but high priority by entropy and CRITIC, and at the end, t-stat is in the high weight class. NSE 

and R are lower priority by objective weight but high priority from subjective way, and they are in the 

highest weight class also at the end. RSE is high priority whether for subjective or CRITIC method. For 

NMABE%, and NRMSE%, they were always lower priority whether for objective or for subjective way. After 

getting the final weights for each criterion, the TOPSIS method was applied and Tables 16, 17, and 18 show 

the score and the rank of all models according to the fifteen averaging period. The criterion is the relative 

closeness rcn to the worst solution (NIM). The best model is the one whose rcn is nearest 1 (far away NIM). 

Table 16. Score and Ranking for Annual, Summer, and Winter Averaging  
Annual rcn  Summer rcn  Winter rcn 

CPRG 0.958  Gueymard 0.948  CPRG 0.920 
Gueymard 0.954  CPRG 0.947  Gueymard 0.912 

G&G 0.857  Shazly2 0.916  CPR 0.879 
CPR 0.856  CPR 0.900  Whillier 0.838 

Liu&Jordan 0.849  Whillier 0.859  Liu&Jordan 0.827 
Kaplanis 0.849  Liu&Jordan 0.858  Kaplanis 0.827 
Whillier 0.835  Kaplanis 0.858  G&G 0.826 
Newell 0.791  G&G 0.853  Baig1 0.807 
Shazly2 0.760  Newell 0.806  Newell 0.780 
Baig2 0.739  Baig2 0.805  Baig2 0.657 
Baig1 0.731  Baig1 0.778  Shazly2 0.639 
Jain1 0.471  Jain1 0.638  Jain1 0.553 

Shazly1 0.365  Jain2 0.547  Jain2 0.428 
Jain2 0.338  Jain3 0.533  Jain3 0.420 
Jain3 0.324  Shazly1 0.429  Shazly1 0.380 
Baig4 0.211  Jain5 0.373  Jain5 0.291 
Baig3 0.165  Baig4 0.360  Jain4 0.262 
Jain5 0.146  Jain4 0.345  Baig4 0.207 
Jain4 0.114  Baig3 0.320  Baig3 0.165 

 

For seasonal averaging, CPRG is the best for the annual and winter averaging and in second position for 

the summer season. Gueymard model is the best for summer season and in second position for yearly and 

winter averaging. 
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Table 17. Score and Ranking from January to June 
Jan rcn  Feb rcn  March rcn  April rcn  May rcn  June rcn 

Gueym 0.947  CPRG 0.945  CPRG 0.992  CPRG 0.941  CPRG 0.886  Baig 1 0.938 

CPRG 0.944  Gueym 0.945  Gueym 0.991  Baig 1 0.940  Gueym 0.875  CPRG 0.890 

CPR 0.930  Shazly 2 0.915  Baig 1 0.955  Gueym 0.935  CPR 0.862  Gueym 0.883 

Baig 2 0.906  CPR 0.897  CPR 0.954  CPR 0.884  Whillier 0.801  CPR 0.860 

Shazly 2 0.869  Whillier 0.858  G & G 0.936  Whillier 0.840  Liu & J 0.789  Whillier 0.807 

Whillier 0.863  Kaplanis 0.856  Liu & J 0.935  Liu & J 0.837  Kaplanis 0.789  Liu & J 0.798 

Liu & J 0.857  Liu & J 0.856  Kaplanis 0.935  Kaplanis 0.837  G & G 0.785  Kaplanis 0.798 

Kaplanis 0.857  G & G 0.853  Shazly 2 0.933  G & G 0.836  Newell 0.746  G & G 0.794 

G & G 0.851  Baig 2 0.810  Whillier 0.933  Newell 0.788  Jain 1 0.679  Newell 0.757 

Newell 0.803  Newell 0.797  Baig 2 0.909  Baig 2 0.682  Baig 1 0.602  Jain 1 0.655 

Jain 1 0.672  Baig 1 0.725  Newell 0.896  Shazly 2 0.668  Baig 2 0.600  Baig 2 0.561 

Jain 2 0.553  Jain 1 0.636  Shazly 1 0.843  Shazly 1 0.528  Shazly 2 0.562  Jain 2 0.537 

Jain 3 0.536  Jain 2 0.540  Baig 4 0.752  Jain 1 0.509  Jain 2 0.500  Jain 3 0.535 

Baig 1 0.458  Jain 3 0.525  Baig 3 0.733  Jain 2 0.410  Jain 3 0.496  Shazly 2 0.520 

Jain 5 0.371  Shazly 1 0.376  Jain 1 0.510  Jain 3 0.401  Jain 5 0.402  Shazly 1 0.496 

Jain 4 0.343  Jain 5 0.363  Jain 2 0.370  Jain 5 0.254  Jain 4 0.379  Jain 5 0.460 

Baig 4 0.332  Baig 4 0.336  Jain 3 0.356  Jain 4 0.222  Baig 4 0.263  Jain 4 0.441 

Baig 3 0.252  Jain 4 0.334  Jain 5 0.192  Baig 4 0.215  Shazly 1 0.245  Baig 4 0.310 

Shazly 1 0.188  Baig 3 0.295  Jain 4 0.173  Baig 3 0.172  Baig 3 0.226  Baig 3 0.281 

 

Table 18. Score and Ranking from July to December 
July rcn  Aug rcn  Sept rcn  Oct rcn  Nov rcn  Dec rcn 

CPRG 0.906  CPRG 0.923  CPRG 0.945  CPRG 0.945  Gueym 0.938  Gueym 0.953 

Gueym 0.898  Gueym 0.911  Gueym 0.934  Gueym 0.945  CPRG 0.937  CPRG 0.951 

CPR 0.869  Baig 1 0.881  CPR 0.846  CPR 0.887  CPR 0.929  CPR 0.940 

Whillier 0.825  CPR 0.873  G & G 0.836  Shazly 2 0.885  Baig 2 0.882  Baig 2 0.922 

Liu & J 0.814  Whillier 0.835  Kaplanis 0.830  G & G 0.848  Shazly 2 0.880  Whillier 0.871 

Kaplanis 0.814  Liu & J 0.826  Liu & J 0.830  Liu & J 0.846  Whillier 0.855  Kaplanis 0.864 

G & G 0.809  Kaplanis 0.826  Whillier 0.819  Kaplanis 0.846  Kaplanis 0.847  Liu & J 0.864 

Baig 1 0.776  G & G 0.824  Newell 0.775  Whillier 0.841  Liu & J 0.847  G & G 0.856 

Newell 0.773  Newell 0.783  Shazly 2 0.721  Baig 2 0.801  G & G 0.838  Shazly 2 0.843 

Shazly 1 0.770  Baig 2 0.634  Baig 1 0.713  Newell 0.787  Newell 0.786  Newell 0.800 

Jain 1 0.588  Shazly 2 0.613  Baig 2 0.708  Baig 1 0.768  Jain 1 0.619  Jain 1 0.656 

Baig 2 0.548  Jain 1 0.557  Jain 1 0.498  Jain 1 0.613  Baig 1 0.572  Jain 2 0.528 

Jain 2 0.538  Shazly 1 0.446  Jain 2 0.349  Shazly 1 0.510  Jain 2 0.514  Jain 3 0.508 

Jain 3 0.535  Jain 2 0.445  Jain 3 0.338  Jain 2 0.493  Jain 3 0.495  Baig 1 0.458 

Shazly 2 0.527  Jain 3 0.439  Shazly 1 0.329  Jain 3 0.479  Jain 5 0.304  Jain 5 0.305 

Jain 5 0.460  Jain 5 0.320  Baig 4 0.217  Baig 4 0.477  Jain 4 0.271  Baig 4 0.297 

Jain 4 0.441  Jain 4 0.294  Jain 5 0.180  Baig 3 0.439  Baig 4 0.266  Jain 4 0.270 

Baig 4 0.263  Baig 4 0.205  Baig 3 0.174  Jain 5 0.328  Shazly 1 0.239  Baig 3 0.215 

Baig 3 0.234  Baig 3 0.165  Jain 4 0.149  Jain 4 0.303  Baig 3 0.218  Shazly 1 0.181 

 

So, CPRG is the best for eight months (February, March, April, May, July, August, September, and October). 

CPRG is also in a second position for four months (January, June, November, and December). It means that 

CPRG is the best for eight months and in second position for the four remaining months. As seen above, 

CPRG is the best for the annual and winter averaging and in second position for the summer season. So, for 

the present work, CPRG model is the best model to estimate the mean hourly radiation based on the daily 

value for Roche Plate, Cirque de Mafate. In second position is Gueymard, because it is the best for three 

months (January, November, and December) and the summer season. Then, Gueymard model is also in the 

second position for other seven months (February, March, May, July, August, September and October).  
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6.5. Performance of the CPRG model 

Seen that CPRG model is the best among the nineteen models, the present section will focus on its 

performance. Fig. 14 gives a graphical comparison between the measured data and the calculated data from 

CPRG model, for the monthly mean hourly irradiation.   

 
      (a)          (b)     

Fig. 14. Monthly mean hourly irradiation from January to December: (a) measured, (b) CPRG model. 

 

For the measured data, the maximum of the irradiation is at 11 h solar time for January, February, March, 

April, August, October, and November. This maximum is for noon solar time for May, June, July and 

September. For December, the maximum is at 10 h solar time. Seen that for CPRG model, the maximum is 

always at noon solar time, it is expected that the uncertainties or errors of the model will be lower for the 

months where the maximum is at noon solar time. Then, the monthly mean daily irradiation which is the 

sum of the monthly mean hourly irradiation during a representative day is calculated, the result is in Table 

19. 

Table 19. Measured and Estimated Monthly Mean Daily Irradiation in Decreasing Order  
Month Nov Oct Sept Dec Jan Feb March Aug May April July June 

Measured [kWh/m2] 6.28 5.49 5.45 5.40 5.30 4.88 4.71 4.67 4.24 4.07 3.95 3.64 
CPRG [kWh/m2] 6.3 5.49 5.43 5.41 5.31 4.89 4.69 4.68 4.25 4.07 3.96 3.64 

Relative difference in % −0.26 0.00 0.33 −0.21 −0.19 −0.10 0.42 −0.16 −0.25 −0.06 −0.23 −0.20 

 

Even there is a difference between measured and estimated irradiation value for each hour, the monthly 

mean daily value is practically the same because the relative difference is no more than 0.26% in absolute 

value. Fig 15. shows the same comparison but for annual, summer and winter average.   
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Fig. 15. Measured and calculated mean hourly irradiation for annual, summer, and winter averaging. 

The maximum of irradiation for the measured data is at 11 a.m solar time. For the winter season, this 

maximum is still at 11 a.m but the value at noon solar time is very near the maximum. For CPRG model, the 

maximum is always at noon solar time. Due to the shift of the irradiation maximum hour, there is 

underestimation in the morning, and overestimation in the afternoon. Theoretically and practically, the 

annual value is the average of the summer and winter season. Table 20 shows the value of the measured 

and calculated mean daily irradiation for these three averaging periods. 

Table 20. Measured and Estimated mean Daily Irradiation in Decreasing Order  
Period Annual Summer Winter 

Measured [kWh/m2] 4.831 5.109 4.571 
CPRG [kWh/m2] 4.823 5.114 4.577 

Relative difference in % 0.18 −0.10 −0.13 

 

With a relative difference not more than 0.2% in absolute value, here again; the CPRG model gives a very 

good estimate of the mean daily irradiation for the period of averaging. The next step now is to analyze the 

ability of the CPRG model to estimate the mean hourly irradiation from the daily value. Figs. 14. and 15. 

show the graphical difference between the measured and calculated value for the hourly irradiation. Table 

21 gives the numerical value of the seven criteria for annual averaging, summer and winter season. To 

compare summer and winter season, the best value between them is highlighted in green.        

Table 21. Statistical indicators for CPRG Model for the Annual, Summer and Winter Averaging 

CPRG NSE R RSE NMBE (%) NMABE (%) NRMSE (%) t-stat 
Annual 0.863 0.938 0.672 0.006 19.18 20.92 0.001 

Summer 0.872 0.939 0.7701 0.100 21.75 25.20 0.014 
Winter 0.909 0.962 0.7696 0.277 16.63 18.35 0.048 

 

The correlation coefficient R is between 0.938 and 0.962, which indicates a good fitting. The NMABE% is 

about 17% for winter and 22% for summer. The NRMSE% is 18% for winter and 25% for summer, with 21% 

for annual average. The NMBE% and t-stat are very low, 0.1% and 0.014 respectively for NMBE% and t-stat 

for summer season, that is another indicator of good fitting. By the highlighted values in Table 21, it can be 

assumed that the CPRG model is more efficient during austral winter than austral summer.  

The next is to analyze the monthly performance of the CPRG model. Fig. 16(a) shows the curves of RSE 

and R for CPRG model for the twelve months, for these criteria more the value is near 1 more the model is 

better. The values of the correlation coefficient R are between 0.912 (December) and 0.983 (July), for NSE 

the values are between 0.82 (December) and 0.950 (July). For these indicators, the fitting is good. The look 

or behavior of the two curves is the same. The best performance period (highest value for R and NSE) for 

the CPRG model occurs between April to September with maximum in July, whereas less performance 
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occurs during October to March. The lowest values are for March and December with minimum in 

December. The relative difference between December (worst efficiency) and July (best efficiency) is 7.22% 

for R and 14% for NSE. 

Fig. 16 (b) gives the curves of NMABE% and NRMSE%, more the value is low towards zero, more the 

model is better. Here, the situation is exactly like the previous with NSE and R. The best performance period 

(lowest value for NMABE% and NRMSE%) is again during April to September, with the minimum value 

(highest performance) in July, 12.34% for NMABE% and 14.53% for NRMSE%. Conversely, the period of less 

efficiency is during October to March. The highest values (lowest efficiency) are for March and December. 

For NMABE%, the latter two months are very near each other, 24.9% for March and 24.8% for December. 

For NRMSE%, the maximum value is for March as 29.35% while it is 28.55% for December. The highest 

value for NMABE% and NRMSE% is around two times more than the lowest value. There is bigger gap 

between the highest and lowest value for NMABE% and NRMSE% than for NSE and R. The period of best 

performance during April to October with July for the maximum of efficiency is the reason why by Table 21, 

the CPRG model is more efficient during austral winter season than the austral summer season.  

 

 

 

 

 

 

               

 

 

 

 

 

 

       (a)          (b)     

Fig. 16. Monthly value for CPRG model: (a) NSE and R, (b)NMABE% and NRMSE%. 

 

Fig 17(a). gives the plot of NMBE% and t-stat for the CPRG model. If NMBE% is negative, it means 

underestimation and conversely a positive value means overestimation. The model is better if NMBE% 

tends towards zero. For t-stat, which is always positive, the model is validated if the t-stat value is inferior to 

2.7188 for twelve degrees of freedom. More the t-stat value tends towards zero, more the model is better.   
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      (a)          (b)     

Fig. 17. Monthly value for CPRG model: (a) NMBE% and t-stat, (b) RSE. 

 

The t-stat value for all the twelve months does not exceed 0.1 for the CPRG model while the limit is 

2.7188, so the model is well and largely valid. The minimum value is for October (t-stat = 0.001), and it is 

0.014 for February. For NMBE%, there is underestimation in March (NMBE% = −0.42%) and September 

(NMBE% = −0.151%), and then there is overestimation for the other months with the exception of October 

where the NMBE% is −0.004% which can be practically considered like zero. The most negative value of 

NMBE% is −0.42% for March, and the most positive is 0.283% for May, these values are very small and 

practically can be considered like zero especially in front of the NMBE% values from second group’s model. 

Fig. 17(b) is for RSE, and more the value is low towards zero, more the model is better. The minimum 

value of RSE is for the month of March (RSE = 0.637) and the maximum is for month of November (RSE = 

1.382). The ratio of highest RSE value and lowest RSE value is about 2.17.      

7. Discussion 

7.1. About the main features of the solar irradiation at the site 

The weather at the Cirque of Mafate is very complex and special. Figs. 4–6 show that even the curve of the 

averaged hourly irradiation is bell-shaped for a representative day as expected, there is an asymmetry from 

solar noon time between morning and afternoon and the maximum is for 11 h not at noon solar time. The 

main reason comes from two things; the first is the cloud coverage and the second is the relief mask by the 

mountain wall on the west side. Figs. 7 and 8 show that the clearness index is high on the morning, i.e., it is 

a clear sky in the site with a maximum at 10 h and then the clearness index decreases as time passes, which 

means that there is a cloud coverage rising. At noon solar time, when the sun is at its maximum height, even 

it is still a clear sky for annual and winter averaging, the cloud coverage makes that the clearness index is 

already in its downward slope. For the summer average, at noon solar time, the clearness index is already 

below 0.6 which means the sky is partly cloudy. Seen that the highest relief mask is the wall mountain on 

the west side (Fig. 2), it is in the afternoon when the azimuth of the sun is on the west direction that its 

effect is predominant, significantly reducing the direct solar beam radiation from and around 16 h. This 

situation combined with whatever the cloud coverage makes that the clearness index is lower than 0.3 from 

16 h. This reasoning explains the asymmetry and the maximum irradiation at 11 h. Theoretically, all models 

suppose that the maximum is at noon solar time, but the shift to 11 h means that there are 

underestimations in the morning and overestimations in the afternoon. For the future, the research of a new 

model that will be specific for the present site should take into account the clearness index and the solar 

relief mask by the surrounding topography.  

7.2. About objective and subjective weight 

Objective and subjective weight have all their advantages and disadvantages. It is the reason that they are 

used together. If the objective weight is automatic, discussion should be done for the subjective weight. The 

decision taken here is based on two points; the first is from previous paper [7] in the same field (estimating 

mean hourly radiation based on the daily value) where a primitive or rough hierarchy for the criteria, but 

without weight calculation or MCDM method, were done. The second is from analysis of the data; it was 

shown that for this study, NMBE% should have lower importance than NMABE% and or NRMSE%.  

7.3. About the best model  

The best model is CPRG followed by Gueymard according to the TOSPSIS result. Figs. 9–13 show that 
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CPRG and Gueymard are always in the best set of models, near the best model for each criterion, and for 

some months they are the best (months of March, September and October for NMBE% and t-stat). The 

models in second group, especially Baig 1, Shazly 1 and Jain 1 should be better because they are based on 

the knowledge of r12 that is the ratio of the hourly and daily irradiation at noon solar time, and their 

Gaussian distribution considers the random behavior of weather parameters. But, only Baig 1 and Baig 2 

stand out among the other second group model. As a Gaussian distribution, these models suppose that the 

maximum is at noon solar time and there is symmetry between morning and afternoon, but as told above 

the real weather condition in the Cirque of Mafate is far from these conditions.  

The analysis of the results and Figures show that Baig 1 is the best for some criteria for some months 

(NRMSE%, NMABE%, RSE and NSE) but at the end the TOPSIS method puts CPRG as the best, because Baig 

1 and the entire second group’s model fail too much on NMBE% and t-stat. The high dispersion value 

between the first group and second group for t-stat is the reason why t-stat has a high weight in the 

objective method as seen in Tables 13 and 14. Nevertheless, Baig 1 is the best for the month of June and in 

second position for April. But unfortunately, r12 is not a commonly available datum, so practically without it, 

Baig 1, Jain 1 and Shazly 1 are completely useless. By this latter, only Baig 2 can represent the second group 

model on this study, and its rank or score is far lower than CPRG and Gueymard.      

So, for the Cirque of Mafate, the models from the first group are the good estimates. And between models 

in the first group, CPRG is the best, followed by Gueymard. This result is logical because the first group is 

based on the Whillier or Liu and Jordan [10] models and CPRG and Gueymard models are the best latter 

improvements. 

7.4. Relationship between the performance of the best model and averaging period  

The performance of the CPRG model depends on the averaging period. The model is more efficient, 

especially by NSE, R, NRMSE%, and NMABE% criteria during the period from April to September, with the 

maximal efficiency in July. And for the rest of the year (October to March), the performance is less with 

minimal efficiency in March and/or December. It is the reason why the model performs well for austral 

winter averaging than for austral summer averaging. For the months when the maximum irradiation hour is 

at noon solar time, the shift between the curve of measured and calculated data is reduced, so the errors are 

reduced and the model performs well. For the months when this maximum occurs at 11 h, the 

above-mentioned shift is emphasized and the model performs less. December is the month of minimal 

efficiency (highest errors and uncertainties) because the maximum irradiation hour is at 10 h, so the shift is 

maximal. All these specifications should be taken into account, in the future, for the research of a new model 

to estimate, for the present site, the mean hourly irradiation from the daily value.     

8. Conclusion 

The aim of this work is to study the main features of solar irradiation and to find among the existing the 

best model to estimate the mean hourly irradiation based on the daily value for the Cirque of Mafate. For the 

first target, it was found that following the meteorological and topographic parameters on the site, 

especially the cloud coverage, the rugged terrain and the relief mask around, the solar irradiation is very 

atypical with a maximum at 11 h solar time, and asymmetry between morning and afternoon because in 

general it is a clear sky in the morning and the afternoon is cloudy. The surrounding relief starts also to 

obscure the direct solar beam radiation from around 16 h. For the second target, all existing models in the 

literature as well as their variants were used, so nineteen models altogether. Seven statistics criteria were 

used to evaluate the performance of each model. The assessment was done by the principle of the Multi 

Criteria Decision Making, and especially the TOPSIS method where the best ideal solution and the worst 

solution are identified, then the best model is the one that is nearest the best solution or farthest the worst. 
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For TOPSIS, a hierarchy between the criteria reflected by the weight for each criterion must be established. 

Subjective and objective weights were used together. If the objective weight is automatic, the subjective 

weight depends on human knowledge and judgment. The experience from similar previous work and 

present data analyze are the base of the judgment matrix used to get the subjective weight. In the end, the 

results show that CPRG is the best model and Gueymard is in the second position.  

The present work shows the problem of studying solar irradiation at a rugged terrain and relief in a high 

mountain place like the Cirque of Mafate. The atypical behavior of the solar irradiation at the present site 

means that future work should focus on the research of a new solar irradiation model that considers all 

meteorological, solar and topographic parameters. 
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