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Abstract 

In non-interconnected areas, the efficient use of renewable energies requires optimal management of electricity 

consumption. The site studied is the “Cirque de Mafate” on Reunion Island. Our laboratory has developed a mixed 

integer linear programming model which minimizes the electricity consumption of a cluster of houses. This model is 

deterministic. Our study focuses on the stochastic part, it aims to model, optimize and simulate the stochastic operation 

of an autonomous microgrid by mutualizing production and storage resources. A study for the solar resource forecasting 

is performed, using nonparametric methods for the estimation of probability density functions. Indeed, the prediction 

of the intermittent resource and the combination of production sources are the keys to the good functioning of a 

microgrid in autonomous mode. One of the strategies found is to aim for auto-consumption for three days if the solar 

forecast is pessimistic, a part of the energy is then reserved at the battery level for the next two days. The results allow 

to evaluate the performance of the system in front of random constraints and to make decisions. 

 
Keywords: Mixed integer linear programming, modeling physical systems, nonlinear optimization under constraints, 

smart grid 

1. Introduction 

In isolated sites, decentralized electrification presents the most economical solution for the comfort of 

the inhabitants. However, the implementation of a cluster of houses in an electrical micro-grid requires 

optimal management to achieve user self-consumption. To set up the model, we describe the different types 

of individual consumption and the local energy production available. Power management leads to a large 

integer mixed linear programming system. Our study focuses on three houses in Roche Plate in the cirque 

of Mafate of Reunion Island. This paper presents the stochastic experimentation for one house. In the cirque 

of Mafate, there is no road. All access, including for supplies and emergencies, is on foot or by helicopter. 

There is no main power supply. The inhabitants produce their own electricity thanks to solar panels, with 

battery storage, and diesel generators as back-up. However, fuel for the latter must be brought in by 

helicopter at a high cost [1]. 

For the implementation of the autonomous microgrid, it is necessary to develop a model that minimizes 

the energy consumption without degrading the satisfaction of the users [2], [3]. This involves developing 

an optimal energy management tool that is a large mixed linear program. This model is constrained by 

physical criteria and the users' wishes.  The developed model is deterministic, but the insufficiency of the 

deterministic model leads us to stochastic models whose goal is to take into account the uncertainties of the 

physical parameters of the system and the parameters of users. Indeed, the intermittency of the solar 

resource is taken into account in this paper. The novelty of this work is that we investigate a stochastic 

model for an optimal energy management. The objective is to model, optimize and simulate the stochastic 

operation of autonomous micro-grids by mutualizing production and storage resources. 
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2. Problem Statement 

Our study site is on Roche Plate, in the « Cirque de Mafate » of Reunion Island. Three neighboring 

houses are concerned. Two of them are inhabited by families with 1 or 2 children, the third is a lodging 

offering 3 rooms to accommodate possible hikers (tourists) [1]. For this article, we experiment for one 

house. The studied house is composed of electrical appliances such as refrigerators, freezers, lamps, 

television, portable radio, HIFI, washing machine [1]. 

Some electrical appliances will be "defferable" i.e. the energy demand can be shifted throughout the day 

until a much more suitable time slot is found for their execution. The production device consists of 

photovoltaic panels (327W/unit) [1]. 

3. Mathematical Models 

3.1. Deterministic approach 

At the source level, the deterministic approach consists in finding a clear sky model to estimate the solar 

radiation of a day. The theoretical model designed to estimate the solar radiation of a day is the Bird model 

[1], [4].  

The description of each electrical consumption is given during a period of 𝑇 hours [1], [3]. Typically 

𝑇 =  24  hours for one day. For this period, the time interval [𝑘, 𝑘 +  1] ,  is defined for 𝑘 ∈
{0, . . . , 𝑇 − 1} in the cluster of three houses. The problem is formulated like an optimization problem with 

constraints [1], [2], [3] with a formula for the objective function to be minimized. The corresponding list 

of parameters is defined by the following notations [1], [5]. If  𝑓𝑗(𝑖)   denotes the end of the consumption  

𝑖  in the house  𝑗, 𝑓𝑗
𝑚𝑖𝑛(𝑖) and  𝑓𝑗

𝑚𝑎𝑥(𝑖)  refer to the lower and upper bound of  𝑓𝑗(𝑖),  𝑓𝑗
𝑜𝑝𝑡(𝑖) is the optimal 

value corresponding to the resident's wish for the end of the consumption  𝑖  in the house 𝑗. The evaluation 

of  𝑈𝑗(𝑖) , the distance between  𝑓𝑗(𝑖)  and 𝑓𝑗
𝑜𝑝𝑡(𝑖) , is proposed. 

Starting by: 

𝑓𝑗
𝑚𝑖𝑛(𝑖)≤ 𝑓𝑗(𝑖)≤ 𝑓𝑗

𝑚𝑎𝑥(𝑖)                                                                                                                             (1) 

Then  𝑈𝑗(𝑖)  the distance between 𝑓𝑗(𝑖)and  𝑓𝑗
𝑜𝑝𝑡(𝑖)is defined by [1]: 

𝑈𝑗(𝑖) =

{
 
 

 
 

𝑓𝑗(𝑖)−𝑓𝑗
𝑜𝑝𝑡(𝑖)

𝑓𝑗
𝑚𝑎𝑥(𝑖)−𝑓

𝑗
𝑜𝑝𝑡

(𝑖)
       𝑖𝑓 𝑓𝑗(𝑖) > 𝑓𝑗

𝑜𝑝𝑡(𝑖)

𝑓𝑗
𝑜𝑝𝑡(𝑖)−𝑓𝑗(𝑖)

𝑓
𝑗
𝑜𝑝𝑡(𝑖)−𝑓𝑗

𝑚𝑖𝑛(𝑖)
      𝑖𝑓 𝑓𝑗(𝑖) ≤ 𝑓𝑗

𝑜𝑝𝑡(𝑖)

                                                                                                     (2) 

Which should be reduced as little as possible in order to satisfy greatly the comfort of the users. 

It is easy to verify that 0 ≤ 𝑈𝑗(𝑖) ≤ 1, and to understand that the more 𝑈𝑗(𝑖) is close to 0, the more the 

user is satisfied. The last formula (2) can be written shortly by [1]: 

 𝑈𝑗(𝑖) = 𝛿𝑗𝑢(𝑖)
(𝑓𝑗
𝑜𝑝𝑡

(𝑖)−𝑓𝑗(𝑖))

𝑓
𝑗
𝑜𝑝𝑡(𝑖)−𝑓𝑗

𝑚𝑖𝑛(𝑖)
+ (1 − 𝛿𝑗𝑢(𝑖))

(𝑓𝑗(𝑖)−𝑓𝑗
𝑜𝑝𝑡(𝑖))

(𝑓𝑗
𝑚𝑎𝑥(𝑖)−𝑓

𝑗
𝑜𝑝𝑡

(𝑖))

                                                                               (3) 

where  𝛿𝑗𝑢(𝑖) ∈  {0 ; 1} is the function defined by: 

𝛿𝑗𝑢(𝑖) = 1  if and only if  𝑓𝑗(𝑖) ≤ 𝑓𝑗
𝑜𝑝𝑡(𝑖)                                                                                                                 (4) 

Finally, equation (3) is written in the form [1]: 
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𝑈𝑗(𝑖) = (
𝑓𝑗
𝑜𝑝𝑡(𝑖)

𝑓
𝑗
𝑜𝑝𝑡(𝑖)−𝑓𝑗

𝑚𝑖𝑛(𝑖)
+

𝑓𝑗
𝑜𝑝𝑡(𝑖)

𝑓𝑗
𝑚𝑎𝑥(𝑖)−𝑓

𝑗
𝑜𝑝𝑡(𝑖)

) × 𝛿𝑗𝑢(𝑖) − (
1

𝑓
𝑗
𝑜𝑝𝑡(𝑖)−𝑓𝑗

𝑚𝑖𝑛(𝑖)
+

1

𝑓𝑗
𝑚𝑎𝑥(𝑖)−𝑓

𝑗
𝑜𝑝𝑡(𝑖)

) × 𝑧𝑗𝑢(𝑖) +
(𝑓𝑗(𝑖)−𝑓𝑗

𝑜𝑝𝑡(𝑖))

(𝑓𝑗
𝑚𝑎𝑥(𝑖)−𝑓

𝑗
𝑜𝑝𝑡(𝑖))

   (5)  

where 

𝑧𝑗𝑢(𝑖) = 𝛿𝑗𝑢(𝑖) × 𝑓𝑗(𝑖)                                                                                                                                              (6) 

The objective function to be minimized is given by: 

𝐽 = ∑ ∑ ∑ 𝐸𝑗(𝑖, 𝑘)
𝑇
𝑘=1

𝐼𝑗
𝑖=1

3
𝑗=1 +∑ ∑ 𝑈𝑗(𝑖)

𝐼𝑗
𝑖=1

3
𝑗=1                                                                                                           (7) 

Here, 𝐼𝑗 denotes the number of electrical appliances in the house n° 𝑗, for 𝑗 going from 1 to the number 

3 of houses. During the range time  [𝑘 ∆𝑡, (𝑘 +  1)∆𝑡], 𝐸𝑗(𝑖, 𝑘) is the energy (Wh) consumed by the service 

n° 𝑖 in the house n° 𝑗 and ∆𝑡 = 1. 

Let us now come to specify all the constraints governing the storage of the battery [1], [6]. 

For each instant 𝑡 (in hour), 1 ≤ 𝑡 ≤ 𝑇, the balance for the supply power is: 

−𝑃𝐵𝑖𝑛(𝑡) + 𝑃𝐵𝑜𝑢𝑡(𝑡) − 𝑃𝐿𝑜𝑎𝑑(𝑡) + 𝑃𝑃𝑉(𝑡) ≥ 0                                                                                      (8) 

where 𝑃𝐵𝑖𝑛(𝑡) is the power stored in the battery and 𝑃𝐵𝑜𝑢𝑡(𝑡) the power supplied by it, 𝑃𝐿𝑜𝑎𝑑(𝑡)  is the 

energy consumed by the electric devices, 𝑃𝑃𝑉(𝑡)  the energy produced by the photovoltaic panel. 

For the linearization of the problem, we follow the procedure described by Bemporad et al [7]. 

Additional inequality constraints will be added to the system due to the introduction of the new variables 

by the method used in [3], [8]. The MILP (Mixed Integer Linear Programming) formulation is then solved 

to obtain the allocation of services throughout the day [1]. 

The evolution of the battery state of charge 𝑆𝑂𝐶(𝑡) is governed by the following equation: for all 1 ≤
 𝑡 ≤  𝑇 –  1, 

𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) + (𝜔𝐵𝑖𝑛(𝑡) − 𝜔𝐵𝑜𝑢𝑡(𝑡)) × ∆(𝑡)                                                                                       (9) 

where  𝜔𝐵_𝑖𝑛(𝑡)  and  𝜔𝐵_𝑜𝑢𝑡(𝑡)  are respectively the battery current of charge and discharge.   

The battery state of charge is bounded by the  upper limit 𝑆𝑂𝐶𝑚𝑎𝑥   and lower limit 𝑆𝑂𝐶𝑚𝑖𝑛  : for all 1 ≤
 𝑡 ≤  𝑇 , 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                                                                                                                              (10)  

This constraint means that the battery should not be discharged or charged beyond some limits in order 

to protect it from damage and to extend its life. 

Finally, the battery currents of charge and discharge are bounded by using a control parameter 𝛼(𝑡), a 

logic variable, satisfying: for all 1 ≤  𝑡 ≤  𝑇, 

{
0 ≤ 𝜔𝐵𝑖𝑛(𝑡) ≤ 𝛼(𝑡) × 𝑤𝑚𝑎𝑥 _𝑐

0 ≤ 𝜔𝐵𝑜𝑢𝑡(𝑡) ≤ (1 − 𝛼(𝑡)) × 𝑤𝑚𝑎𝑥 _𝑑
                                                                                                              (11) 

where  𝜔𝑚𝑎𝑥𝑐 and  𝜔𝑚𝑎𝑥𝑑   are respectively the maximum limit value of the battery current of charge and 

discharge. 

3.2. Stochastic approach 

In the stochastic part, a model taking into account uncertainties of the enter parameters is developed. 
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Due to the intermittence of the solar radiation, deterministic model is not sufficient to predict daily solar 

radiation. Indeed, to make the prediction of solar radiation much more realistic, we used the actual data 

from the test site (Roche Plate, Mafate), and estimate its distribution for each hour. 

Two nonparametric methods for the estimation of probability density functions were therefore used to 

estimate the distribution of solar radiation: the histogram method and the kernel method. For the kernel 

method, we used the Gaussian kernel and the Epanechnikov kernel [9], [10], [11], [12], [13]. 

Indeed, it is possible to estimate the probability density function from a sample of n observed values of 

𝑋 denoted by 𝑥1, 𝑥2, . . ., 𝑥𝑛   ; which are assumed to be independently and identically distributed according 

to the law of 𝑋 [9]. The aim is to deduce from the sample an estimate of the probability density function of 

the random variable 𝑋. 

Let ℎ ∈ ℝ+
∗  be a parameter called bin width. Let ([𝑘ℎ, (𝑘 + 1)ℎ))𝑘∈ℕ  be a partition of ℝ+ . The 

histogram method gives the following estimator of the probability density function:  

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝑁𝑘1[𝑘ℎ,(𝑘+1)ℎ)(𝑥)
+∞
𝑘=1             ∀𝑥 ∈ ℝ                                           (12) 

where 1[𝑘ℎ,(𝑘+1)ℎ)(. ) is the indicator function of the interval [𝑘ℎ, (𝑘 + 1)ℎ) and 𝑁𝑘 =⋕ {𝑖: 𝑥𝑖 ∈ [𝑘ℎ, (𝑘 +

1)ℎ), 1 ≤ 𝑖 ≤ 𝑛} is the number of observations in [𝑘ℎ, (𝑘 + 1)ℎ). 

However, the histogram estimator has a non-negligible defect that is to be non-continuous. To obtain a 

continuous probability density function, we use the kernel (or Parzen) method. This method is a 

generalization of the histogram method [11]. The probability density function is then estimated by: 

𝑓ℎ(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1             ∀𝑥 ∈ ℝ,                                                                                                         (13) 

where 𝐾 is an even probability density function called kernel and ℎ ∈ ℝ+
∗  is a parameter called bandwidth, 

which governs the degree of smoothness of the estimator. 

Now let come to study the distribution of solar radiation for each hour using annual radiation data from 

the Roche Plate test site, Mafate: 

• At 5 a.m., 6 a.m., 7 a.m., 4 p.m., 5p.m, 6p.m, and 7 p.m., the solar radiation may be modeled by 

random variables following log-normal distributions.  

• From 𝑘 = 8 a.m. to  𝑘 = 12 a.m., the solar radiation  ℛ𝑘  may be modeled by: 

    ℛ𝑘 = 𝑀𝑘 − 𝑆𝑘                                                                                                                                 (14) 

where  𝑀𝑘 > 0 is the upper bound of the solar radiations given by the data and 𝑆𝑘 is a random variable 

following a log-normal distribution truncated to the interval [0;𝑀𝑘]. 

• From 1 p.m. to 3 p.m., the solar radiation may be modeled by random variables following bimodal 

distributions, their probability density functions are convex combinations of two gaussian densities 

𝑓1 and 𝑓2 that is for some 𝛼 ∈ ]0 ; 1[: 

𝑓 = 𝛼 𝑓1 + (1 − 𝛼) 𝑓2                                                                                                  (15)  
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(a)                                                                                                  (b) 

Fig. 1. (a) Estimated probability density function of solar radiation at 4 p.m., (b) estimated probability density function 

of solar radiation at 11 a.m 

.   

(a)                                                                                                        (b) 

Fig. 2. (a) Estimated probability density function of solar radiation at 1 p.m., (b) estimated probability density function 

of solar radiation at 2 p.m. 

Figs. 1 and 2 show the plots of probability density functions estimators for solar radiation obtained by 

nonparametric methods. To illustrate the estimated density obtained, we took the following times: 11 a.m., 

and 1p.m and 2 p.m. and 4 p.m. We can see that the random variable of the estimated density follows the 

proposed laws. 

Thus, to take into account uncertainties, we are interested in the method of propagation of uncertainties 

which consists in associating with the input quantities (input parameters) random variables determined by 

their probability distributions. For the deterministic part, we use the MILP as an optimization tool, of which 

all the algorithms that can be involved are already detailed by the preceding mathematical formulations. 

The objective of the stochastic part is to introduce uncertainties into these algorithms using the method of 

propagation of uncertainty [14], [15]. Thus, the uncertainty of the input parameters impacts the output 

variables. This modelling allows to explore the possible states of the system and their consequences when 

the system constraints are not satisfied. So, in the stochastic approach, the energy produced by the 

photovoltaic panel 𝑃𝑃�̃�(𝑡) is a random variable that depends on the intermittence of the solar radiation. For 

output variables, 𝑃𝐵𝑖𝑛(𝑡)̃  is the random variable of power stored in the battery,  𝑃𝐵𝑜𝑢𝑡(𝑡)̃  the random 

variable of power supplied by it  and 𝑆𝑂𝐶(𝑡)̃  the random variable of the evolution of the battery state of 

charge. 
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4. Numerical Simulations of Stochastic Experiment 

For the stochastic modelling of the autonomous micro-grid, the intermittency of production is taken into 

account, thus the photovoltaic production is modelled taking into account the predicted solar radiation, that 

is obtained by using the experimental data of the studied site, the non-parametric estimation methods and 

the numerical simulations. Thus, we can predict the possible productions for each day, for each month and 

for each season and forecast our ability to meet the demand, and therefore decide on the amount of energy 

to keep at the battery level for the following days. As said before, self-consumption for three days is targeted 

when the solar forecast becomes pessimistic for the next two days. 

The Fig. 3 shows us the consumption of electrical appliances in a house, the electrical consumptions are 

characterized by permanent services from 1 a.m.  hour to 12 p.m. due to the activity of the refrigerators and 

freezers. The punctual loads are localized around 12 a.m., in the solar radiation zone, except for devices 

which are only useful in the evening to serve the needs of the night such as lights. Indeed, this configuration 

corresponds to the optimal distribution of service proposed by the solver. The high demand of loads around 

12 a.m., or in the solar radiation zone minimizes the use of the battery. 

 

Fig. 3. Consumption of electrical appliances in a house 

 

Fig. 4. Classic and optimized daily electrical consumptions for a house 
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As shown in Fig. 4, a comparison between the current use of electrical devices and the optimized 

configuration proposed by the solver allows to highlight the low power consumption at the end of the day 

for the optimized consumption. In fact, in the optimized configuration, only the permanent services and the 

low-power evening lights operate from 6 p.m. 

 

Fig. 5. Evaluation of users’ comfort for each consumption service 

For the comfort, as shown in Fig. 5, the satisfaction graph gives the difference between the time service 

calculated by the solver and the desired time giving by the users. A constant comfort level of 50 % is 

observed, it allows to validate the configuration of the proposed use of the services, the goal is to minimize 

consumption without too much degrading users ‘satisfaction. 

 
(a)                                                                                                          (b) 

Fig. 6.(a) scenarios 1 of predicted production and optimized consumption, evolution of the battery state of charge and 

variation of charge and transfer power for the battery, (b) scenarios 2 of predicted production and optimized 

consumption, evolution of the battery state of charge and variation charge and transfer power for the battery 

Fig. 6 show us the two of the possible scenarios of the random variable of the production, the random 

variable of the evolution of the battery state of charge, the random variable of the power stored in the battery 

and the random variable of power supplied by it. As shown in the figures, the intermittency of the solar 

production is observed. 
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Seeing the two scenarios of the random variable of the evolution of the state of charge of the battery, we 

can observe in both cases a state of charge higher than 60% at the end of the day. The graph allows us to 

follow the dynamics of flux exchanged between production and storage.  The power 𝑃𝐵𝑖�̃� stored in the 

battery logically follows the solar radiation curve. Therefore, the stochastic study demonstrates the 

performance of the system in front of intermittent source. The system can adapt well to random constraints. 

In the stochastic study, we can have a degraded day for the solar production and for that, the only source 

of production will be the battery, and it is precisely in this case that we have to minimize the power 

consumption, and therefore the power supplied by the battery in the precedent clear sky day so that the 

system is autonomous for the next two days.  

Thus, the study of the solar radiation forecast will help us to predict the optimistic or pessimistic day of 

solar production and to make decisions on the management of the microgrid system. 

5. Conclusion 

The results show that the solver adapts well to the stochastic operation of the microgrid system. However, 

efficient management of cluster of house is an alternative to obtain the most efficient use of renewable 

energy resources. Looking for the minimum energy consumption for one house is not enough to optimize 

the production system. Modeling of nanogrid at the scale of a house must be use to upscale at the level of 

microgrid. The main advantage of the production and the participative consumption is to mix almost 

electrical devices. This combination of services provides greater flexibility to renegotiate deliveries or 

reduced load shedding. The grouping of houses allows to attain the autonomy of the electrical network [1].  

In this study, the intermittence of the resource is taken into account and the prediction of the solar 

radiation, thus the solar production allows us to make decision and validate the performance of the system 

in front of the intermittent source. The consideration of uncertainties on power consumption is currently in 

progress. The next step is to extend the stochastic study of one house to the scale of the three houses, 

followed by the consideration of demand variation. The study of the system performance will then be 

carried out followed by decision making, due to the prediction of the resource and the variation of the 

demand. 
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