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Abstract 

The promotion of renewable energy in distant areas faces problems with mismatch between generation and grid. 

Because the local demand is not enough to accommodate variable renewable energy, a proportion of renewable 

power need to be transmitted to external power systems via the local grid besides consumed by the local load, which 

poses a great challenge to the security control of the local grid. Such a relationship is called “coupling”. To reduce the 

side effect of coupling in the stage of transmission planning, we firstly proposed coupling evaluation indicators in the 

perspective of the grid structure and system operation states and then presented a method to implement evaluation 

based on the economic dispatch model considering system's mitigation against fluctuations. Finally, a transmission 

expansion planning (TEP) method is proposed with the inclusion of coupling evaluation and the consideration of a 

hybrid AC/DC transmission system. The case study demonstrates the coupling and shows that hybrid AC/DC 

transmission is better when coping with such a situation than AC transmission system. 
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1. Introduction 

In recent years, renewable energy has developed rapidly, and the deployment of renewable energy has 

become far from the load center, such as the Nordic wind power center [1] and the renewable energy 

center in Northwest China [2]. The demand near these centers is small and the affluent renewable energy 

power needs to be transmitted to external systems for efficient consumption. Considering the economy, a 

large amount of renewable energy needs to be sent out via the local grid. At the same time, peak-shaving 

power supply near the renewable energy base is insufficient, which needs additional regulation of 

conventional generators in the local power grid. In this situation, the fluctuated renewable energy would 

influence the local grid. For example, in 2011, faults in the Gansu and Hebei province of China caused 

wind turbines disconnection, with the loss of over 500MW [3]. 

The above problem is due to the fact that the renewable energy transmission grid partially overlaps 

with the local grid, leading to the conflict between renewable power transmission and security control in 

local grid. This relationship is called “coupling”, which would cause operation states closer to the security 

boundary, such as congestion incidents and extreme voltage incidents. In order to stabilize the state 

fluctuation, the system needs to sacrifice part of the operational economy. 

There are many researches concerning the impact of renewable energy on the operation status of 

power systems [4-6]. Reference [4] quantified the risk associated with wind power intermittency in 

California. Reference [5] analyzed three major challenges of integrating variable generation from wind 

and solar into power systems. Reference [6] investigated peak regulation of wind power integrated power 

systems. However, most of studies focused on the impact analysis of renewable energy on the system. 

Few of them combined impact analysis with system planning. 
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DC transmission, which can regulate the power flow with less effort than AC transmission, has 

advantages in dealing with the volatility of renewable energy compared to AC transmission. Thus DC 

transmission is adopted in transmission system planning. At present, most of the planning scenarios for 

DC are long-distance and large-capacity transmission. With the rapid development of VSC-HVDC 

transmission technology, the coordinated cooperation of VSC-HVDC and AC grid will significantly 

increase the flexibility in grid operation. In the study of AC/DC hybrid transmission planning, Reference 

[7] proposed that the economic equivalent transmission distance cannot be used as the only criterion for 

determining DC lines in planning; [8~10] considered DC transmission to reduce power loss. Reference 

[11] considered the use of DC transmission to connect distant wind farms or photovoltaic power plants, 

[12] proposed the use of DC grid in the integration of distributed generation. In the above researches, 

[7~10] did not consider renewable energy and [11~12] did not pay enough attention to the volatility of 

renewable energy. Moreover, the above studies did not consider the effect of HVDC on the flexibility in 

local grids with high proportion of renewable energy. 

This study focuses on the coupling problem of renewable energy output and system state in a system 

with high proportion of renewable energy. The distinction of renewable power transmission grid and local 

power supply grid is proposed based on power flow tracking method. The coupling evaluation indicators 

and method are established from the perspective of grid structure and operation state. In addition, a hybrid 

AC/DC transmission expansion planning method for power systems considering reducing coupling is 

proposed. The examples verify the proposed indicators and methods. 

2. Coupling of Renewable Energy and Local Grids 

2.1. Concept of coupling 

In power grids integrated with large amount of renewable energy, part of the renewable power 

provides local load, while the remaining power is supposed to be transmitted to external systems for 

efficient consumption. Therefore, the grid has two functions: local power supply (denoted as Fun1), and 

external power transmission (denoted as Fun2). Due to the limitation of environment and policy, the 

construction of transmission lines directly to external systems lags behind the construction of the local 

grid. Thus, part of the renewable energy needs to be sent out through local grid. In addition, the flexibility 

resources near the renewable generation stations are far from enough. Thus, to ensure the steady power on 

external power transmission, local system needs to interact and coordinate with renewable energy. 

From aspect of grid structure, the mentioned problems above are mainly due to the partial overlap 

between local grid and external power transmission grid, leading to the interaction and mutual influence 

between the fluctuated renewable energy and the operation status in local grid. The fluctuated renewable 

energy output would make system states closer to the security boundary. To cope with it, part of the 

renewable energy has to be curtailed when necessary. This kind of mutual influence and restriction is 

referred to as "coupling", leading to significant fluctuation in the system, which would result in an 

increase in the probability that the power flow and voltage approach the limit. The system operation 

would become much more complicated and part of the operational economy has to be sacrificed. 

2.2. Distinction of grid functions 

The functions of the grid are mainly distinguished by the purpose of power transmission. If the power 

transmitted on the line is for local load supply, then the line belongs to Fun1, and vice versa, the line 

belongs to Fun2. This paper implements the identification of functions based on the power flow tracking 

method [13]. Based on the principle of proportional distribution, the power flow tracing method 

determines the usage degree of each load node on the grid by tracking the active power flow. 

Suppose that the set of nodes connected with local load is local

Node  and the set of nodes connected with 

external system is out

Node , then at time t, the lines belong to Fun1 and Fun2 can be grouped in different 

sets: 
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local L local

, Line, , Node,    0,  k

ij t t ij t kLine if P Node    (1) 

out L out

, Line, , Node,    0,  k

ij t t ij t kLine if P Node    (2) 

Due to the volatility of renewable energy, the functions of the lines varies at different time. In time 

period T, Fun1 and Fun2 are the union of the functions at each time, respectively. 

, ,

local local

Line T Line t
t T

    (3) 

, ,

out out

Line T Line t
t T

    (4) 

3. Evaluation Indicators and Methods of Coupling 

Based on the differentiation of grid functions in the previous section, considering the performance of 

the system in terms of power flow and voltage, this section evaluates the coupling from two aspects, 

coupling range and coupling depth. 

3.1. Evaluation Indicators 

 Range of Coupling (RoC) 

This indicator evaluates the proportion of the nodes which simultaneously belongs to both functions: 

C

Node Node( ) / ( )RoC n n    (5) 

 C local out

Node Line,T Line,T,   i ijNode if Line     (6) 

where n( ) represents the number of elements in the set, C

Node represents the set of nodes which 

simultaneously belongs to both functions. The larger the ratio is, the wider the coupling range is. 

 Depth of Coupling (DoC) 

The depth of coupling is evaluated by the distance between system state and security boundary.  

i. Rate of Heavy-Load Incident (RoHLI) 
The indicator RoHLI is expressed as: 

     HL

Line, Line/t

t T

RoHLI n n n T


    
   (7) 

HL max

Line, ,   0.7ij t ij ijLine if P P   (8) 

This indicator reflects the frequency of heavy-load incident occurring during time period T. The larger 

the indicator is, the closer the system is to the transmission limit.  

ii. Rate of Voltage Off-limit Incident (RoVOI) 

The indicator RoVOI is expressed as: 

     VL

Node, Node/t

t T

RoVOI n n n T


    
   (9) 

where 
VL

Node,t  is the set of nodes with voltage beyond the limit at the time point of t, which is: 

VL

Node, ,  1.05 . . 0.95 . .ij t i iNode if U p u orU p u    (10) 

This indicator reflects the frequency of the event that the voltage exceeds the limit during time period T. 
The larger the indicator is, the closer the system is to the voltage limit. 

iii. Mean value of power that exceed the limit (MPE) 
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The indicator MPE is expressed as: 

   
HL
Line,

max HL

, Line,0.7 /

ij t

ij t ij t

t T t TLine

MPE P P n
 

      (11) 

This indicator represents the range of lines that are beyond the power flow boundary. The larger the 
indicator is, the larger states fluctuation owing to renewable energy is. 

iv. Extreme deviation value of Voltage (EVV) 

The indicator EVV is expressed as: 

 max max( ) 1.05,0.95 min( )EVV   V V  (12) 

where V is the voltage vectors of the node. EVV is the maximum voltage deviation in the whole time 
period. The larger the indicator is, the larger states fluctuation owing to renewable energy is. 

3.2. Evaluation methods 

To evaluate the coupling characteristics accurately, detailed simulation of the real production process 

is needed. Considering the participation of flexibility resources to mitigate excessive fluctuation in 

practice, an economic dispatching model considering mitigation effect is adopted to simulate the practical 

operation of the grid. Meanwhile, due to the advantages of DC transmission when dealing with the 

renewable energy, DC transmission is taken into consideration in the model. At the same time, in order to 

evaluate the voltage distribution of the system, the method in [14] is used to calculate the voltage of each 

node based on the DC power flow result. 

1) The economic dispatch model considering system's mitigation effect on volatility  

a) Objective function 

In addition to minimizing total cost of power generation, the mitigation effect of is also considered in 

the objective: 

  min  ( )obj F f OC RoHLI    (13) 

G

G ,i i t

t T i

OC c P
 

  (14) 

( )
REF

OC
f OC

C
  (15) 

where OC represents total cost of power generation, PGi,t indicates the generated power for node i and at 

time t, ci is the unit generation cost. Function f( ) is to standardize the total cost of power generation, and 

CREF is the reference value of total cost of power generation. The larger the value of λ is, the more 

important of the mitigation requirement is in the system operation. 

b) Constraints 

Restricts to abandon renewable energy: 

max

RE, , RE, , RE0   i t i tP P i    (16) 

Restricts for the capacity of DC line: 

DCmax DC DCmax DC

Line  ij ij ij ijP P P Line     (17) 

Restricts for the capacity of AC line: 

ACmax AC ACmax AC

Line  ij ij ij ijP P P Line     (18) 
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The power balance of each node: 

from, from, to, to,
Line Line Line Line

AC DC AC DC

G , RE , L , , , , ,+
i i i i

ij ij ij ij

i t i t i t ij t ij t ij t ij t

Line Line Line Line

P P P P P P P
   

         (19) 

The other constraints consist of thermal generation output limit and ramp capacity limit, voltage phase 

limit and DC power flow. 

The calculation of RoHLI: 

 
AC
Line

HL HL

Line, ,=

ij

t ij t

Line

n I


   (20) 
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,
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0
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I

else





 (21) 

c) Linearization 

While (21) is not a linear function, auxiliary variables I

,ij tu , II

,ij tu , III

,ij tu can be introduced for linearization. 

AC I AC,I II AC,II III AC,III

, , , , , , ,ij t ij t ij t ij t ij t ij t ij tP u P u P u P    (22) 

I AC,max AC,I I AC,max

, , ,0.7ij t ij ij t ij t iju P P u P     (23) 

II AC,max AC,II II AC,max

, , ,0.7 0.7ij t ij ij t ij t iju P P u P    (24) 

III AC,max AC,II III AC,max

, , ,0.7 ij t ij ij t ij t iju P P u P   (25) 

I II III

, , , 1ij t ij t ij tu u u    (26) 

I II III

, , ,, , 0,1ij t ij t ij tu u u   (27) 

HL I III

, , ,=ij t ij t ij tI u u  (28) 

From (22) to (28), the model can be transformed into a mixed integer linear programming(MILP) 
problem, and can be solved by commercial software(such as CPLEX). 

2）Calculation of voltage distribution 

We use the method proposed in [14] to calculate voltage distribution based on the result of DC power 
flow.  

4. Hybrid AC/DC Grid Planning Considering Coupling Reducing 

A bi-level stochastic programming model adopting DC lines is established in this study for grid 

planning. Meanwhile, as the problem related to voltage can be solved by local reactive power 

compensation devices, our programming model mainly focuses on the problem of heavy-load lines 

caused by renewable energy fluctuations. 

The planning process is shown as Fig.1. The upper level is to make investment decision, and then 

transmit construction plan X to the lower level. The lower level contains production simulation module 

with operation state evaluation. The simulated operation status S is evaluated and finally, the lower level 

returns operation cost OC and the risk index E (RoHLI is adopted here) to the upper level. 
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Fig. 1. Planning process considering reducing coupling. 

Upper level: 

min  IC OC  (29) 

AC AC DC DC

ij ij ij ijIC c z c z   (30) 

0. .  s t RoHLI RoHLI  (31) 

where IC is the investment cost of the system. AC

ijc and DC

ijc  are the construction cost of AC and DC lines, 

separately; AC

ijz and DC

ijz are 0-1 variables with 1 representing constructing AC/DC lines. The constraint is 

that RoHLI is smaller than threshold. 

Lower level: 

OC and RoHLI are calculated. It is worth noting that as the output of renewable energy is variable, 

multi-scenario technique is used to make simulation result closer to the practical situation. In this paper, we 

adopt Affinity Propagation Clustering Algorithm to generate multiple renewable energy output scenarios 

and simulate with each scenario [15]. Then the integrated result is obtained by: 

S

k k

k

OC p OC


   (32) 

S

k k

k

RoHOI p RoHOI


   (33) 

where pk indicates the probability of the kth scenario, ΩS is the set of scenarios, OCk and RoHOIk are the 

operation cost and the risk indicator, respectively. 

As the decision making and production simulation process contains a huge amount of integer 
variables, causing problems of large-scale optimization and huge time-consumption, heuristic method is 
adopted in this problem.  

Detailed methods are shown as follows: the system makes investment decisions on a round-by-round 
basis. In each round of decision making, candidate lines are selected one by one to add to the system. 
Denote the line added as Lineij with investment cost cij. Calculate beneficial index Iij=Fij/cij for all 
candidate lines and the line with the largest I is selected as the optimal result in this round. Calculation 
rounds are repeated until RoHLI satisfies the threshold which is set before. 

5. Case Study 

Fig. 2 shows a simplified grid of a province in northwestern China, which can represent typical 

characteristics of grid with large-scale renewable energy integration in China. There are 47 nodes, 3 of 

which transmitting energy to external system, which is marked as OUT in Fig. 2, and 104 lines in the 

system. The system is summarized in Table 1. The proportion of wind power generation capacity is about 

50% and part of the wind power needs to be sent out through the local grid. 
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Table 1. Generation and demand in GS system 

Wind power generation capacity/MW  12300  

Conventional generator  capacity/MW  12800  

Local load/MW  11011  

Power transmitted to the external system/MW  6800  

5.1. Analysis in a typical day 

The operation status and coupling characteristics in a typical day are analyzed and shown in Fig.2. The 

λ is taken as 1 in the analysis. Different colors indicate the proportion of time that the power flow or 

voltage exceeds the limit. 

As shown in Fig. 2, the problem that power flow and voltage exceed the limit is serious. The lines 

whose power flow is close to the limit are mostly lines in local grid connected with renewable energy and 

conventional generators. This mainly due to the large amount of power provided to the local grid when 

the wind is strong, and the need for conventional generators in the local grid to increase their output to 

support load when the wind is weak. The coupling indicators of the system are shown in TABLE 2. 

It can be seen that the nodes with the two functions account for about 74% of the whole system. In 

average, the lines whose power flow exceed the limit at each time is about 5% and the over-limit power 

flow of lines whose power flow exceed the limit is about 20% of the rated capacity. The nodes whose 

voltage exceed the limit account for about 9%, and the minimum voltage is below the limit value of 0.065. 

Therefore, the coupling of the system is significant. 
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Fig. 2. The operation status in a typical day. 

Table 2. Evaluation Result of GS System 

indicator RoC RoHLI RoVOI MPE EVV 

value 0.7447 5.4% 9.3% 20.2% 0.065 

5.2. Planning results 

Set the threshold of RoHLI to 1.5%. AC candidate lines are set following the principle that new lines 

are available in all existing right-of-ways but the number of lines on each right-of-way cannot exceeds 3. 

For DC candidate lines, all DC lines can be built in the place where the AC line can be built. At the same 

time, there are 5 more candidate lines, which are DC6-45, DC6-46, DC5-46, DC5-47, DC8-47. These 

lines provide direct connection between local generators and renewable energy transmission lines to 

reduce the impact of uncertainty with renewable energy on the local grid. 

The cost of DC transmission consists of two parts, the line cost and the cost of the converter station. 

Assume that the DC voltage level is ±300kV with transmission capacity being 1000MW. The cost 

parameter is in [16]. The AC line is assumed to be 330kV, and the cost parameter of which is in [17]. 

The results of planning with hybrid AC/DC transmission and only AC transmission are shown in Table 

3, in which the order of the planning scheme from the top to bottom is the order in which the lines are 

added to the system each round.  
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Table 3. Planning result comparison 

Parameter Hybrid AC/DC AC only 

Planning result 

AC31-47 

DC8-47 

DC8-36 

AC31-47 
AC9-39 

AC37-39 

AC27-45 
AC22-23 

Operation cost(M$/y) 2379 2703 

Investment cost(M$) (equivalent 

annual value) 
167 120 

Total cost(M$) 2546 2823 

 

AC lines are adopted in the planning results bringing economic advantages. At the same time, due to 

the flexibility of DC transmission, the DC lines are installed to cope with the uncertainty. It is worth 

noting that the line DC8-47 connects the generator directly to the renewable energy transmission right-of-

way. It can be inferred that this strategy can effectively improve the performance of the system when 

dealing with fluctuation with renewable energy. Compare the results of hybrid AC/DC with only AC 

transmission, it can be seen that to achieve same threshold, planning only with AC transmission requires 

more lines, and the operation cost is greater. Plans with DC transmission can significantly reduce the 

operation cost while helping to stabilize system states. Besides, the hybrid AC/DC planning scheme has 

lower cost, which rationalize the installation of DC transmission systems. 

6. Conclusion 

In this paper, to deal with the problem of coupling between renewable energy and the system state in 

the grid with high proportion of renewable energy, the evaluation indicators and methods are proposed 

from the perspective of network structure and operation states. The evaluation index is included in the 

AC/DC transmission expansion planning. The case study shows: 

(1) The coupling of the grid with the integration of large-scale renewable energy are obvious and the 

proposed indicators can reflect the effect of coupling; 

(2) The structure of the power grid with hybrid AC/DC transmission significantly affects the coupling 

of the system. The reduction of coupling in the hybrid AC/DC transmission system is greater than that in 

the AC system. 
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