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Abstract 

The aim of this paper is to provide an integrated optimization and control algorithm in order to solve the residential 

load demand uncertainty problem as encountered in a grid-interactive hydrokinetic river (GHR) system. The 

proposed GHR system is incorporated with a pumped hydro-storage system (PHS) to store excess energy. The 

proposed algorithm aims to resolve the load demand uncertainty in order to minimize the electricity bills of the 

consumer and to maximize the energy sales into the grid, under time-of-use (TOU) tariff scheme. Therefore, the 

maximization of load demand satisfaction is not compromised. The traditional open loop optimization approach 

cannot cater for load demand uncertainty. It becomes more challenging to adequately meet the uncertain load demand. 

Within this context, the rule-based control algorithm is developed to manage power flow during uncertain load 

demand. The obtained results demonstrated that the load demand is adequately met at a reduced grid consumption 

cost, through the application of the rule-based control algorithm. This confirmed that the proposed algorithm benefits 

the user, by reliably and economically satisfying the load demand at a minimal grid energy cost.  
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1. Introduction 

Energy planning is critical to ensure a reliable energy supply system. Electric utility companies are 

facing an ever-increasing load demand challenge due to population growth [1]. Population growth may 

also result into increased probability of load demand uncertainty. Electric utility companies employ 

demand side management (DSM) programs to better make use of the existing power generation capacity 

[2,3]. Time-of-use (TOU) is the most widely adopted DSM technique used to encourage users to reduce 

their demand during peak demand hours. During peak hours, price of electricity is higher when compared 

to standard and off-peak hours. However, the disadvantage is that users may not always respond to the 

change in electricity price in order to optimize the electricity usage. Hence, the best approach is to equip 

users with an automatic control/responsive system instead of manual control.  

With the normal open-loop optimization technique, it is difficult to meet the uncertain load demand. 

The reason being that it relies heavily on prediction precision. This could lead to undesired system 

operation [4]. Hence, a close-loop approach such as model predictive control (MPC) is applied [5]. 

However, MPC requires accurate load forecasting to achieve the objectives [6]. Accurate load forecasting 

is very difficult due to factors such as a change in weather condition and holidays [7]. In this context, a 

rule-based control algorithm is used in this study to address the load demand uncertainty problem. The 

rule-based algorithm relies on real-time measurements than relying on forecasting data [8].    

Large amount of energy consumption is due to household and commercial sectors [9]. Therefore, 

bringing energy savings in such sectors is very critical. Consumers from such sectors may utilize their 

onsite grid-interactive renewable energy generation system to lower their energy consumption bills. On 

other hand, a grid-interactive generation system may be integrated with the energy storage system. The 
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aim is to store excess energy during inexpensive off-peak periods. The stored energy can then be utilized 

during expensive peak period to supply the unmet load demand or be sold into the grid.  Hydrokinetic is a 

promising renewable energy technology that has gained considerable attention these days. In this paper, a 

grid-interactive hydrokinetic river (GHR) system consisting of the pumped-hydro storage (PHS) system is 

used to store excess energy. The proposed system is used to supply the typical residential load and 

supplemented by the utility grid. In this paper, a real-time rule-based control algorithm is developed to 

solve the load demand uncertainty by minimizing the energy bills of the residential consumer.  

2. Proposed System Layout and TOU Tariffs 

As mentioned that the proposed system consists of the GHR system with a PHS system as shown in 

Fig. 1. The supplied load demand is variable for the studied nine days’ period [10]. The load demands 

electricity from three different energy sources such hydrokinetic P1(t), PHS system P2(t), and the utility 

grid P3(t). The PHS stores excess energy from the hydrokinetic system P4(t) and can also be recharged 

using utility grid P5(t) during the affordable off-peak periods. Additionally, the excess energy from the 

hydrokinetic system P6(t) and PHS system P7(t) can be sold into the grid. The optimal energy management 

of the proposed system was developed in the previous study [11]. However, the behavior of the developed 

optimization model was not analyzed under load demand uncertainties since the open-loop optimization 

approach has been used.  The simulation parameters to be used in this study, are as shown in Table 1. 

2.1. Hydrokinetic system 

Hydrokinetic system generates electricity by making use of the kinetic energy of the flowing water 

resource to drive the underwater turbines. The operation principle is like the one of wind generation 

systems. The main discrepancy is that the water density is 800 times greater than the air density. Hence, 

large amount of electricity can be generated at very low water speeds (0.5 m/s and above) [12,13,14].   

 

Fig. 1. Grid-interactive hydrokinetic river system with a pumped-hydro storage system  

Table 1. Simulation parameters of the proposed Grid-interactive system 

  

Item Value 

Sampling time (Δt) 30 minutes 
Total number of sampling intervals (N)  432 

PHS nominal capacity 3 kWh 

PHS maximum volume 100% 
PHS minimum volume 5% 

Initial upper reservoir capacity 50% 

Overall efficiency of the PHS 70.6% 
Hydrokinetic system size  3 kW 
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Fig. 2. TOU period for high demand season [15] 

2.2. Pumped-hydro storage 

The PHS system stores electrical energy by elevating certain volume of water from the lower reservoir 

(river) to the upper reservoir using the motor-pump system. The stored water can then be released later to 

generate electricity using the turbine generator unit [16,17]. 

2.3. Time-of-use tariff rates and periods 

The TOU tariff period as used by the South African power utility company, have been applied as 

shown in Fig. 2 [15].  During low demand season, the tariff charges (using South African currency) are 

ZAR1.07/kWh, ZAR0.74/kWh and ZAR0.47/kWh during peak, standard, and off-peak period, 

respectively. During the study, 1US$ was equivalent to ZAR14.30. 

3. Proposed Algorithm 

As mentioned earlier that the rule-based algorithm is developed to solve the load demand uncertainty 

problem. The aim is to ensure that the uncertain load demand is reliably and economically met at all time. 

The predicted power variables are presented using the subscript P, while the actual ones are presented 

without the subscript P. Letter r is used to represent the sampling interval during rule-based control 

algorithm. The sampling interval ranges between 1 and N. The rule-based control algorithm will be tested 

using low demand season data. The uncertainty problem is solved through the application of the 

following criteria.    

3.1. When the actual load demand is more than predicted 

In cases whereby, the actual load demand is more than predicted, the three energy sources should be 

given priority orders to meet the unmet load demand. The predicted hydrokinetic-to-load power (PP1) is 

increased as a priority to meet the unmet load demand. Hence, it should be adjusted to a new/actual value, 

(P1). Hence, the predicted grid-to-load power (PP3) and turbine-generator-to-load power (PP2) are 

permitted to be constant as shown in Eq. (1). Hence, the new value should not exceed the rated power of 

the hydrokinetic system, as shown by Eq. (2). If the adjusted hydrokinetic power is not enough to meet 

the actual demand, the predicted PHS-to-load power is the next option to be increased and followed by 

the grid-to-load power, as shown by Eq. (3) and (4), respectively.  

)(3)(2)()(1 rPrPrLoadr PPPP    )1( Nr                      (1) 

))(),min(( )(6)(4)(1)(3)(2)()(1 rPrPrPrPrPrLoadr PPPPPPP      )1( Nr            (2) 

))(),min(( )(7)(2)(3)(1)()(2 rPrPrPrrLoadr PPPPPP      )1( Nr                         (3) 

)(2)(1)()(3 rrrLoadr PPPP        )1( Nr               (4) 
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3.2. When the actual load demand is less than predicted 

In cases whereby, the actual load demand is less than predicted, the open loop optimization model 

leads to excessive energy supply. Hence, the supplied load power needs to be reduced. The power 

reduction needs to be economically achieved by firstly reducing the costly one (e.g. the grid-to-load) and 

concluding with the affordable one (hydrokinetic-to-load). Hence, the predicted grid-to-load (PP3) is 

reduced to a new actual value (P3), while maintaining the two other sources constant, as shown by Eq. (5). 

After reducing or discontinuing PP3 it may happen that the actual power is still more than the demanded 

one. Hence, the next step is to reduce hydrokinetic-to-load (PP1) to a new value, as shown by Eq. (6). 

Should it happen than the supplied power is still more than the demanded one, then the predicted PHS-to-

load power is then discontinued, as shown by Eq. (7).   

 

))(,0max( )(2)(1)()(3 rPrPrLoadr PPPP          )1( Nr               (5) 

 

),0max( )(2)()(1 rPrLoadr PPP          )1( Nr                       (6) 

 

)1,1()(2 zerosP r         )1( Nr                                 (7) 

3.3. When the actual load demand is as predicted 

In cases whereby, the actual load demand is as predicted, the won’t be any power shortage of 

excessively supplied power. All power variables are then maintained as predicted, as shown by Eq. (8).  

 

)()( rPiri PP      )71(  i     )1( Nr                                       (8) 

4. Results and Discussion 

As mentioned earlier that the rule-based algorithm is developed to solve the residential load demand 

uncertainty. The main idea is always to allow the actual load demand to be met. 9 days’ residential load 

profile is as shown in Fig. 3. for the residential load. The red dotted line reveals the actual load demand 

while the black solid lines represents the predicted demand during open-loop optimization approach. On 

other days the predicted demand is more than the actual one, while it is vice versa on other days.   

During the evening peak period of the first Monday, the actual load demand is less that the predicted 

one, as shown in Fig. 3. Hence, this leads to a power shortage. As a result, the control algorithm increased 

the hydrokinetic power and PHS power as priority options for supplementing the load demand as shown 

in Fig. 5. The grid-to-load power is therefore maintained constant, as shown in Fig. 4. 

 
Fig. 3. Predicted and actual residential load demand 
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Fig. 4. Grid-power supplied to the residential load 

 

Fig. 5. RE system power supplied to the residential load  

During the peak hours of the second Sunday, the actual load demand is less than the predicted one. 

Hence, this leads to excessive load power supply. As a result, the control algorithm allows the grid-to-

load power to be reduced as a means of minimizing the electricity bills, as shown in Fig. 5. Hence, the 

renewable energy power is maintained constant.  

For the simulated nine days, the predicted load demand resulted in an overall grid costs and energy 

sales revenue of ZAR40.34 and ZAR-64.90, respectively. After applying the rule-based control algorithm, 

the overall grid costs have decreased to ZAR28.15, while the overall energy sales revenue has decreased 

to ZAR-59.34. With reference to the baseline grid cost of the actual load demand, the newly acquired 

energy cost saving is 112% as compared to 110% yielded by the predicted load demand. 

5. Conclusion 

The developed rule-based control algorithm proved to handle the load demand uncertainty problem 

since the load was adequately met for the entire simulated 9 days. Whenever the excessive power has 

been supplied to the load, the grid-to-load power is reduced to minimize the electricity bills. Hence, the 

renewable energy penetration is maintained. Whenever there is a power shortage due to the predicted 

demand being less than the actual demand, the model proved to initially increase the RE power to 

mitigate the deficit. Therefore, grid-to-load power consumption is increased as a last option to supplement 

the deficit. This confirmed that the proposed algorithm benefits the user, by reliably and economically 

satisfying the load demand. Even though the baseline grid cost of the actual load demand is higher than 

the predicted one, the control algorithm yielded higher energy cost savings through reduced grid costs. 

The results of this study have led to the future recommendation of applying rule-based control strategy 

under load shifting mechanism. Additionally, further study is needed to analyze the effect of the rule-
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based control algorithm of the payback period of the proposed grid-interactive system.    
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