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Abstract 

In this paper, load profile modelling is introduced as the basis of the research, and a practical photovoltaic (PV) 

profile for a typical UK household with 4kW solar system is presented to couple with the load. An evaluation on the 

combined profile throughout a year is done to size the required battery, and a smart domestic energy storage system is 

developed to integrate the domestic energy storage facility with the renewable energy generation system, in order to 

create a win-win situation for customers and grid. By using PV as an alternative energy resource to power the home 

appliances, the system can reduce the dependence of household on grid, it can reduce the stress on the grid by 

managing the loads and exporting excess energy back to grid to balance peak demand. Also it can cut the electricity 

bill for customers and make profit by selling electricity to grid. Moreover, the electricity tariff is considered in this 

study for system validation. The payback period of the system is evaluated against different sizes of PV-battery 

setups. 
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1. Introduction 

The electricity consumption in the domestic sector can be affected by two factors, the type and number 

of electrical appliances owned in domestic houses and the user consumption pattern of occupants of the 

house [1]. The wide range of variation on appliances’ power consumption and user pattern cause the 

difficulty on predicting daily domestic load profile accurately especially for short time steps. A more 

complex and precise simulation tool is therefore required to be developed for household load profile 

generation. 

In order to meet the target set by the UK Government’s Climate Change Bill in 2007 to cut the UK 

CO2 emissions by 60% from 1990 levels before 2050 [2], schemes such as energy efficiency measures 

(e.g. appliance energy labelling and house insulation) [3] and smart metering [4] which designed to affect 

the households behaviour were considered. Smart meters can provide a series of information including 

tariffs and usage to encourage households use less electricity. The UK Government’s Renewable Energy 

Strategy sets a legally binding target in 2009 to ensure 15% of the energy produced by renewable sources 

by 2020 [5], and runs alongside the Government’s Low Carbon Buildings Programme providing grants 

(known as ‘Feed-in Tariff (FIT)’) for installing small scale renewable energy generation systems [6] such 

as solar power, wind turbines and hydro technology. Thus the total number of domestic PV system under 

4kW installed has increased to 864,836 units in July 2017 [7] compared to the figure at the beginning of 

2012 which was 215,292 units [8]. With domestic solar photovoltaic (PV) system installation, customers 

can save money on electricity bills and get paid for the energy generated by their supplier. However, due 

to lack of energy storage facilities and control systems, a large amount of energy is not utilised during off-

peak hours, and only part of the load at peak hours can be met. This causes load-shedding outage and 
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even a possible energy crisis for the grid. To overcome any mismatch between domestic solar power 

output and the household electricity load profiles [9], and produce a better path to a smart grid in the UK, 

energy storage at domestic households with PV rooftop needs to be reviewed and optimized, in order to 

create a win-win situation for both grid and customers. 

The feed-in tariff (FIT) is a UK government scheme launched in April 2010, which aims to encourage 

the installation of small-scale renewable electricity generation systems [6]. The export tariff is a certain 

amount of cashback paid by the energy supplier on every unit of surplus energy that export to the grid 

[10]. Moreover,  Economy 7 meters measure day and night electricity usage separately, with the figure 

measured, the energy supplier will offer customers an economy 7 tariff which has lower energy price at 

night (nearly 1/3) [11]. This applies for 7 hours each night, depending on the suppliers’ timing decision, it 

could start early from 11pm to 6am the next morning, or later from 1am to 8am. The schemes of FIT and 

Economy 7 tariffs enhance the potential for domestic energy storage system (ESS) to maximise savings. 

Recently, grid connected domestic solar PV with ESS has been studied and the benefits evaluated in 

multiple papers. Renewable energy generation and energy storage system are introduced as two keys to 

the smart grid [12], where the battery energy storage system enables the ability to mitigate the 

intermittency of PV power caused by shading on panels or bad weather condition. An optimisation-based 

approach was used to evaluate the daily profits for domestic PV system with the battery storage system 

coupled [13] [14]. The benefits gained from the PV-battery hybrid system under the consideration of 

different electricity tariffs was analysed and presented for typical summer and winter days [15]. 

Reference [16] also extended the research in paper [15] by presenting the optimal battery sizes to use in 

PV-battery hybrid system to achieve the maximum annual revenue with tariff incentives under the unique 

setup, but without comparing the trade-offs between payback periods, PV sizes and battery sizes. 

From the current extent of research, there’s no publications examining the optimisation of battery 

control algorithm under real world tariffs, and the optimal payback of household energy storage system 

using real world costs. Thus, in this paper, domestic load profiles were modelled using real world data for 

different types of households, alongside validated PV generation profiles for various sizes of solar PV 

systems, to examine the optimisation of household payback period. Batteries with different sizes were 

then engaged to the system with developed control algorithm and payback periods were calculated using 

average real world costs quoted from battery companies. The results were compared with the [14][15][16] 

to analyse the improvement. 

The main objectives of this paper are as follow: 

 Domestic load profile was modelled on an hourly basis for a year using Goldsim simulation tool with 

real world dataset from government energy survey. 

 PV profile was generated using System Advisor Model (SAM), the simulated data was on an hourly 

basis and validated by comparing with real world measured data. The PV profile was then analysed 

and added to the optimisation model together with the domestic load profile. 

 Battery control algorithms and constraints were developed for energy storage system to increase the 

system revenue. 

 Cost of system and tariffs were included in the model to investigate the system behaviour under 

multiple setups. The payback periods were evaluated to determine the marginal and optimal battery 

sizes 

2. System Modelling 

2.1. Domestic load profile modelling 

Goldsim is a simulation tool which can perform Monte Carlo algorithm to the models in order to 

evaluate the uncertainties. The software is highly graphical and extensible, by dragging and editing 

graphical objects, the model can be visually created and algorithm are easily performed through linking 

equations with data blocks in an appropriate manner to automatically indicate their influences. Model 

users can change the variables of the system on the dashboard interface created for the model.  
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Real world data is used in Goldsim simulations, the data used can be found on the UK government 

website [17], on which the Department of Energy & Climate Change has published a survey based on the 

energy monitoring of a total 250 owner-occupied households across England from 2010 to 2011. In this 

survey, there are 5 household types in common which are indicative of almost all homes in the UK shown 

as follow: 

 Single pensioner household (65+ years old) 

 Single non-pensioner household 

 Multiple pensioner household 

 Household with children 

 Multiple person household with no dependent children 

 

      
 

The survey generally divides the household energy consumption into a sum of seven categories of 

appliance, and through monitoring of appliances in these categories for months, the average hourly load 

profile for each of them is produced for both weekend and weekday. 

A bottom-up approach is also used in this simulation method, Fig.1. shows the diagram of the design 

flow of Goldsim load profile generation model. According to the flow chart, the basic idea is to first 

identify the type of household, after letting users select the household type, they also need to select which 

day is going to be simulated due to the difference between typical weekday energy consumption and 

weekend consumption. Week of the year is then requested due to seasonal use for all household 

appliances. Then the type and number of household electric appliances owned is defined by user to couple 

with real world hourly load profile in order to calculate the total energy consumed by each category of 

appliances. Finally the load curves for each category of appliances are summed up to produce total 

household hourly load curve throughout the day. 

In order to precisely simulate the hourly energy demand, a dashboard is created. It asks user for several 

inputs, by selecting and editing in the column and then click on RUN button, the corresponding 

simulation will run automatically based on the user’s real house setup. Then the results are presented in a 

new window when user simply click on the buttons in outputs selection. The simulated domestic load 

profiles were validated with real world measured data to evaluate their reliability. Fig. 2 shows the 

generated load profile of single pensioner household with selected appliances setup and with heavy loads 

included. Seasonal effects also have been considered for all appliances. From the diagrams, Fig. 2.(a) 

shows the typical weekday energy demand in winter, compared to Fig. 2.(b) which shows the weekday 

energy demand in summer, it is obvious that the energy consumption in winter is much higher than that in 

summer due to lower mean temperature, thus higher demand for heating. The two diagrams at bottom 

show the typical weekend energy demand in both winter and summer, they show the similar usage pattern 

as that of weekday. The average total daily electricity consumed in winter is about 25kWh while less than 

10 kWh is used daily in summer.  

Fig. 3 is a set of measured energy consumption curve in a typical household in hourly basis for both 

weekend and weekday in different seasons. Such kind of load profiles can be found on the website of 

ELEXON [18]. From the diagrams, they show the same trend as the simulated results which the energy 

consumption in winter is much higher than that in summer, however, energy consumed on weekend in 

both seasons are observed higher than that on weekday. This is because the monitored household type is 

different with the chosen type for simulation, people who have a job need to go to work during daytime 
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on weekdays while pensioners don’t. The measured total daily consumption in winter is 25.9kWh and 

26.6kWh respectively for weekday and weekend, and in summer, the load reduced to 9.6kWh and 

9.8kWh respectively. 

Generally, the model is validated with measured load profiles, the simulated load profile have the same 

trend on curves and similar amount, the difference between two sets of profiles can be explained by 

different type of household monitored and this doesn't have dramatic impact on the system behaviour. 

 

 
                           (a)                                                 (b)                                                (c)                                                (d) 

Fig.2. Average hourly load profile on (a) weekday in winter; (b) weekday in summer; (c) weekend in winter; (d) 

weekend in summer 

 

 
                           (a)                                                 (b)                                                (c)                                                (d) 

Fig.3. Measured hourly load profile on (a) weekday in winter; (b) weekday in summer; (c) weekend in winter; (d) 
weekend in summer 

2.2. Hourly PV profile simulation 

Based on the domestic load profiles provided previously, in order to integrate the load with a domestic 

renewable energy system, hourly PV profile needs to be generated to compare with the load curve and 

find the optimum battery size.  

To precisely integrate the renewable energy generation with domestic electricity consumption, it 

requires a higher resolution dataset which tracks the PV generation every hour with weather effects 

considered. 

Thus a tool called System Advisor Model (SAM) is used for data generation. It is a free software 

created by the National Renewable Energy Laboratory in U.S. [19], with the integration of weather data 

files and sunlight data files from each meteorological station around the UK, SAM can easily provide the 

hourly PV profile for selected size of system at targeted location. In this study, weather and solar 

resources used are from Finningley station which is close to Sheffield. A 4kW solar system is considered 

for the further research. Fig. 4.(a) shows the generated PV profile, the result is validated by comparing to 

the practically  measured yearly PV generation from 2011 to 2015 shown in Fig. 4.(b). From the diagrams, 

the generated dataset is validated and can be applied to the following research. 

Table 1. lists the typical costs of different sizes PV systems currently on the market, the prices have 

included the installation and supporting hardware, these prices are used for the following study and 

payback calculation. 
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                                                    (a)                                                                                                (b)         

 

Table 1. Costs of PV system for range of sizes 

Solar system size Average price 

1kW 
2kW 

3kW 

4kW 

£1840 
£3680 
£5520 
£6040 

3. Domestic Energy Storage System and Control Algorithm 

The basic concept of grid connected PV-battery hybrid system is shown in Fig.5. A merging platform 

is set as the interface between the load and the different energy sources. The grid provides AC input to the 

platform while solar panel and battery bank provides DC power. Hence, DC-AC inverters are needed to 

transfer the DC power into AC to supply the domestic load. A charge controller is a device with a built-in 

algorithm to control the charging and discharging process for battery banks. The energy used to charge 

the battery is either imported from the grid or absorbed from excess production of PV system. The 

optimisation model optimises the battery charging and discharging process in combination with the solar 

PV system to maximise the annual system revenue and reduce the payback period for the installation. The 

battery storage system has the opportunity of energy self-sufficiency by storing the maximum solar power 

output for night and expensive hour usage, to reduce high electricity bills when variable tariffs are 

implemented. 

3.1. Operating theory 

The basic operating theory is that the domestic energy storage facility is installed with an energy 

management system, the smart controller will gain load profiles from household first, then compare 

against the renewable energy generation. If the renewable energy generation such as solar PV exceeds the 

load, the controller will stop importing energy from the grid, which means the load will be fully covered 

by locally generated power. In this situation, the excess energy generated will be used to charge the 

battery. On the other hand, if the renewable energy generation is lower than the load (e.g. in cloudy or 

rainy days), the controller will try to use PV energy to supply part of the load, then deliver energy through 

discharging of battery to try to meet the load. If the demand is too high which cannot be met by this 

approach, the controller will import electricity from the grid to fully cover the household consumption. In 

[11], the UK economy 7 and 10 tariffs are benefiting those households with storage heating by setting 

two-tier tariffs. In this research, the default Economy 7 hours was used as the off-peak hours run from 

00:00 to 07:00. The economy 7 tariff used in this study is based on the rate from the EDF energy website, 

which is 6.99p/kWh at night and 19.46p/kWh at other hours out of the Economy 7 period. Thus, in this 

study, the optimisation model seeks to make better use of cheap tariff during the night to store energy and 

cover the rest of the hours of the day which have a higher electricity price. 
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Fig. 4. (a) Simulated and (b) Measured PV profile with 4kW system



 

3.2. Battery sizing 

Fig. 6 shows the energy consumption in a single pensioner household with 4 kW solar system installed, 

for a typical day in the four seasons. The bars marked in blue shows the PV production and the red bars 

represents the domestic load demand. The solar energy generation appears as the lowest in winter, this is 

due to shortest daytime. The average daily generation from the simulated dataset for this season is about 

3kWh, while during summer period, as shown in Fig. 6(c), the average daily renewable energy generation 

is typically over 13kWh and it can cover the daily domestic electricity consumption theoretically. Fig. 6(b) 

and (d) show the load profiles in spring and autumn respectively. 

According to the simulated datasets for 5 types of household, the maximum solar energy generation 

appears for a 4kW system at week 26, from which the average daily generation is 20.5kWh, and the 

maximum average excess energy is 15.8kWh per day at week 21 in multiple pensioner household. So 

batteries with less than 15 kWh capacity are unable to absorb the total amount of the excess energy in 

summer, whilst sizes larger than 16kWh have limited utilisation. 

  

 

Fig.5. Basic concept of grid connected PV-battery hybrid system     

Table 2. Battery prices for the range of capacities

  

Thus the trade-off between system performance and batteries sizes needs to be analysed. Lithium-ion 

batteries with communication functions, from 1kWh to 20kWh, were quoted for the research purposes. 

The prices are listed in Table 2. The battery specification from the supplier mentioned the lifetime is 6000 

cycles for 90% depth of discharge which means the capacity will lose 20% after 6000 times of charging 

and discharging. If the battery is set to make a full cycle operation every day, it will last as long as 15 

years, as manufacture guaranteed, hence, the battery degradation cost is assumed very low in this study. 

The maximum power the battery can deliver is over 6kW, due to the inverter choice, hence it is able to 

support most of the load during the day except high power appliances. Since the system is designed to 

optimise energy independence, thus the integration of battery with PV and load is valid.  

(a)                                                 (b)                                                (c)                                                (d) 

Fig.6. Domestic hourly energy demand and domestic PV generation of a typical day in (a) winter; (b) spring; (c) 
summer and (d) autumn 

 

Battery capacity

 

(kWh)

 

Price 

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

£290.16

 

£580.32

 

£870.49

 

£1160.65

 

£1392.63

 

£1671.30

 

£1949.98

 

£2228.66

 

£2507.34

 

£2785.25

 

£1968.23

 

£3238.49

 

£3507.98

 

£3778.24

 

£4047.73

 

£4317.98

 

£4439.71

 

£4700.78

 

£4961.85

 

£5222.92
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3.3. System operating sequence 

 

Fig.7. illustrates the proposed dispatching mode, the system will first use PV energy to provide load 

consumption, if more energy is required by the load, then the battery will engage to provide the excess 

demand. Theoretically, the load should be met by this step, if the battery is not allowed to dispatch or it 

has already reached the minimum state of charge (SOC), finally, it requires energy imported from the grid. 

While in charging mode, which typically happens when PV production is over the load usage, the excess 

energy will be dumped into the battery until it is fully charged, then export the rest to the grid. 

3.4. Battery discharging algorithm 

In order to fulfil the battery energy dispatching control, the system first needs to perform battery 

discharging algorithm on the collected information of yesterday to predict today’s energy usage and 

provide a demand profile to manipulate the system operation throughout the day. The load and PV 

information from yesterday is gained initially, then based on this, an estimate of the total amount of 

energy required to import from grid between 07:00 to 24:00 (𝐸𝑔𝑟𝑖𝑑_𝑜𝑢𝑡7) is calculated: 

𝐸𝑔𝑟𝑖𝑑_𝑜𝑢𝑡7 = (𝐸𝑙𝑜𝑎𝑑_𝑜𝑢𝑡7 − 𝐸𝑠𝑢𝑛_𝑜𝑢𝑡7) − 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦     (1) 

In this equation, 𝐸𝑙𝑜𝑎𝑑_𝑜𝑢𝑡7  is total energy required by load out of Economy 7 hours, 𝐸𝑠𝑢𝑛_𝑜𝑢𝑡7  is 

defined as total energy generated by PV system out of Economy 7 hours and 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦  represents 

maximum capacity of battery that can be used. The unit of each element is watt-hour (Wh).  

In circumstances where there is low ambient temperature, or unfavourable weather, the PV system 

cannot provide sufficient energy, which results in the Equation (1) to be positive. Therefore, both PV 

system and a fully charged battery cannot match the load. Subsequently, the battery use is specifically 

disabled between 10:00 and 15:00 to preserve energy in order to have better performance on peak demand 

support. Thus, the battery will fully charge to its maximum capacity within Economy 7 hours, the amount 

of energy required to charge for each time step (𝐸𝑐ℎ𝑎𝑟) can be calculated by: 

𝑝 = (100% − 𝐸𝑆𝑂𝐶𝑒𝑛𝑑)  ÷ 7       

𝐸𝑐ℎ𝑎𝑟 = 𝑝 × 100% × 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦      (2) 

where 𝑝 is the percentage SOC to be charged. The value of 𝑝 is set a maximum of 0.15 to smooth the 

demand from grid within each hour. 𝐸𝑆𝑂𝐶𝑒𝑛𝑑  is defined as energy left in the battery at the end of the 

previous day. In this study, each time step is set in hourly basis. 

On the other hand, if 𝐸𝑔𝑟𝑖𝑑_𝑜𝑢𝑡7 is negative, it represents load demand of all the hours out of Economy 

7 can be covered by the energy from the PV and energy storage facility. Thus different situations need to 

be considered separately. 

If 𝐸𝑙𝑜𝑎𝑑𝑇 − 𝐸𝑠𝑢𝑛𝑇 > 0 and 𝐸𝑙𝑜𝑎𝑑_𝑜𝑢𝑡7 > 0, where 𝐸𝑙𝑜𝑎𝑑𝑇  is the total energy consumed in the household 

throughout a day and 𝐸𝑠𝑢𝑛𝑇  is the total PV energy generated during the day. In this situation, solar energy 

is insufficient to cover the consumption, therefore the battery needs to matching the load between 07:00-

24:00. The targeted SOC (𝐸𝑆𝑂𝐶𝑒𝑠𝑡) required to be stored in the battery at the end of Economy 7 hours is 

calculated by the equation: 

𝐸𝑆𝑂𝐶𝑒𝑠𝑡 =  𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 × 10% + 𝐸𝑆𝑂𝐶𝑚𝑖𝑛 + ( 𝐸𝑙𝑜𝑎𝑑_𝑜𝑢𝑡7 − 𝐸𝑠𝑢𝑛_𝑜𝑢𝑡7)    
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Fig. 7. System operating sequence 



 

𝐸𝑐ℎ𝑎𝑟 = (𝐸𝑆𝑂𝐶𝑒𝑠𝑡 − 𝐸𝑆𝑂𝐶𝑒𝑛𝑑)  ÷ 7     (3) 

where 𝐸𝑆𝑂𝐶𝑚𝑖𝑛 is the battery minimum SOC set by the user to prevent deep-cycle events, for example, 10% 

of the battery capacity is preserved to prevent sudden change in the load demand on the next day which 

may affect the system behaviour. 

The targeted SOC needs to be reached before 7am in the morning to support the energy consumption 

during the rest of the day, and the battery is allowed to fully cover the load until the minimum SOC is 

reached. 

If 𝐸𝑙𝑜𝑎𝑑𝑇 − 𝐸𝑠𝑢𝑛𝑇 > 0  but 𝐸𝑙𝑜𝑎𝑑_𝑜𝑢𝑡7 < 0 , the solar energy cannot cover the usage throughout the 

whole day (24 hour period) but can cover the consumption between 07:00-24:00. So the battery will 

discharge to its targeted SOC within Economy 7 hours, and then fully cover the load during the rest of the 

day. In this case,  

𝐸𝑆𝑂𝐶𝑒𝑠𝑡 = 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 × 10% + 𝐸𝑆𝑂𝐶𝑚𝑖𝑛        

𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟_7 = (𝐸𝑆𝑂𝐶𝑒𝑛𝑑 − 𝐸𝑆𝑂𝐶𝑒𝑠𝑡)  ÷ 7      

𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟_𝑜𝑢𝑡7 = 𝐸𝑙𝑜𝑎𝑑 − 𝐸𝑠𝑢𝑛      (4) 

𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟_7 and 𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟_𝑜𝑢𝑡7 represent the energy required to discharge to the load at each time step during 

and out of Economy 7 hours respectively, 𝐸𝑙𝑜𝑎𝑑  is the energy consumption of the household at the current 

time step, 𝐸𝑠𝑢𝑛 is the energy provided by renewable PV system at current time step. 

Moreover, if 𝐸𝑙𝑜𝑎𝑑𝑇 − 𝐸𝑠𝑢𝑛𝑇 < 0, it means the PV system can provide sufficient energy to the load 

throughout the day with no electricity needed to import from grid. Hence the battery will discharge 

throughout the whole day including Economy 7 hours. The system is supposed to export electricity to 

grid at higher demand time for example 08:00-11:00 in the morning and 17:00-21:00 in the evening. So 

these 7 hours are chosen for export, the total energy to be export will be divided equally for each hour for 

delivery instead of all in once. The energy can be exported to grid each hour (𝐸𝑒𝑥𝑝𝑜𝑟𝑡) is calculated by: 

𝐸𝑒𝑥𝑝𝑜𝑟𝑡 = [𝐸𝑆𝑂𝐶𝑒𝑛𝑑  −  (𝐸𝑙𝑜𝑎𝑑_7 + 𝐸𝑆𝑂𝐶𝑚𝑖𝑛)] ÷ 7     (5) 

𝐸𝑙𝑜𝑎𝑑_7 represents total energy required by load within Economy 7 hours. 

3.5. Battery energy dispatching strategy 

 

The dispatching strategy is shown in Fig.8. The system first gains historical recorded information of 

the last 24 hours at the beginning of the first time step. Then the system performs battery dispatching 

algorithm on this data. The system needs to evaluate how much energy remained in the battery bank at the 

last time step of the previous period, and how much energy is needed to charge to or discharge from the 

battery. Then a checking function is used to define whether the current hour is in allowed Economy 7 
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hours. If current time step is within Economy 7 hours, it is defined as an off-peak hour on which a lower 

electricity rate is applied. The system will then jump into the off-peak optimisation loop as shown in the 

diagram. After comparing the PV energy generated with the load demand at current time step, the control 

signal will manage the battery to charge from the grid or discharge to the load. Both operations are aimed 

at making the energy stored in the battery equal to the targeted value, the total energy required from grid 

(𝐸𝑔𝑟𝑖𝑑) at current time step is: 

𝐸𝑔𝑟𝑖𝑑 =  𝐸𝑙𝑜𝑎𝑑 − 𝐸𝑠𝑢𝑛 + 𝐸𝑐ℎ𝑎𝑟        (6) 

On the other hand, if the battery is allowed to discharge during Economy 7 hours, the energy required 

from the grid changes to 

𝐸𝑔𝑟𝑖𝑑 =  𝐸𝑙𝑜𝑎𝑑 − 𝐸𝑠𝑢𝑛 − 𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟_7     (7) 

An increment of time function is performed at the last of the each loop, and then feed back to the 

period check. The battery should have a targeted SOC at the end of Economy 7 hours. 

Any hours after 07:00 are defined as peak electricity tariff hours. According to the peak hour 

optimisation loop, the first procedure is to compare PV energy versus load. Then control signals will be 

generated for corresponding circumstances as described in the previous section to perform on the system. 

If the PV energy generated is insufficient to fully cover the demand, such as in a cloudy or rainy day, 

or in winter season and battery is allowed to dispatch energy at this time step, the load will be met with 

energy discharged from the battery. In this situation, battery will discharge to match any demand that 

solar energy cannot cover, hence there is no need to import the electricity from the grid, 𝐸𝑔𝑟𝑖𝑑 = 0. If the 

battery is not allowed to discharge by the control signal, then the amount needed to import from the grid 

is  

𝐸𝑔𝑟𝑖𝑑 =  𝐸𝑙𝑜𝑎𝑑 − 𝐸𝑠𝑢𝑛 .      (8) 

If the generated PV energy is sufficient to supply the load, 𝐸𝑔𝑟𝑖𝑑 = 0, the energy can be fed back into 

the grid during peak demand hours is described in Equation (5), the amount of excess energy after 

exportation will dump into the battery storage system for recharging until it is fully charged, then the rest 

will sell back to grid directly. 

3.6. Battery discharging constraints 

Few constraints are made for the system as listed below: 

 Battery is only allowed to charge from the grid in Economy 7 hours (00:00 to 07:00 was chosen as the 

default value in this study) in order to minimise the cost to the consumer by using cheaper off-peak 

rate, and support the domestic consumption and grid at peak hours. 

 During charging, a maximum amount of charge per hour is set to equal 15% of the battery capacity, in 

order to smooth the demand from the grid. 

 Battery can only discharge till its minimum SOC set by user, in this case, 10% of its total capacity was 

set to prevent deep-cycle events which cause excess degradation and shorten the battery life cycle. 

 If battery is fully charged (reaches 100% SOC), the excess PV energy will directly export to the grid. 

 The battery is allowed to charge from the PV system at any time of the day, but the system will run in 

the sequence which was described above which to meet the load with PV energy first then use the 

excess energy to charge the battery.  
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4. Results and Discussion 

4.1. Battery energy dispatching strategy 

Few assumptions listed in Table 3 are used for simulation, the datasets generated from Goldsim model 

and SAM are exported to Excel for analysis. A dashboard is created shown in Fig.9. in Excel by coding in 

Visual Basic for Application. The dashboard is used to input variables and present results. Users can 

update their expenditure on PV system, installation costs, FIT eligible periods and electricity tariffs in the 

tool, then the tool can automatic calculate the outputs. The datasets and the user interface construct a 

complete tool with comprehensive functions such as load and PV profile modelling, battery system size 

evaluation, payback periods calculation and comparison.  

Take an example of single pensioner household energy storage optimisation, from the result section on 

the dashboard (Fig.9.(b)), optimised system performance for typical winter and summer day were plotted. 

From the figure, where the blue bars represent original domestic load profile, yellow bars represent hourly 

PV energy production, red represents the load profile with smart energy storage system engaged and 

green bars represent the exported energy to grid. In winter, due to short daytime and lower temperature, it 

is obvious that the household electricity consumption is relatively high because of higher demand of 

space heating energy. Performance diagram for winter shows when 𝐸𝑔𝑟𝑖𝑑_𝑜𝑢𝑡7 is positive, where the load 

out of Economy 7 hours cannot be matched by both PV system and a fully charged battery, hence, battery 

is not discharging between 10:00-15:00. In this situation, the energy storage system will try to cut the 

electricity cost for customers by charging the battery at cheaper rate and provide energy to load during 

daytime, so the daytime usage are mostly shifted to Economy 7 hours. Energy drawn from the grid 

between 21:00-24:00 is because the battery has reached its minimum SOC, and the house requires energy 

import. The change of battery SOC throughout the day is shown on the right, the plot shows that the 

battery is fully charged within the first 7 hours and then discharge to meet the load demand between 

07:00-10:00, then the discharge is disabled between 10:00-15:00, after that, the battery starts to 

dispatching energy again till the minimum SOC is reached. 

Table 3. Assumptions made for domestic load profile and PV 

Assumptions 
Domestic load profile modelling 

Appliances setup:    1 refrigerator 

                                 1 upright-freezer 

                                 3 ICTs 

                                 1 LCD TV 

                                 1 washing machine 

                                 1 clothes dryer 

                                 1 dishwasher 

                                 Storage heater 

                                 Water heater 

                                 Kitchen appliances 

                                 Lighting 

PV profile modelling 

Weather data                UK Finningley 

PV module type           Standard 

DC to AC ratio             1.2 

Inverter efficiency        96% 

Array type                     Fixed roof mount 

Tilt                                20 degrees 

Azimuth                        180 degrees 

Total system losses       14.08% 

Degradation of the PV system is not 

considered 

Installation cost 

An installation cost including the cost for an 

electrician to wire the system, the cost for 

supporting hardware and software which 

include a DC-AC inverter & dual way charger 

for battery and a charge controller with 

control algorithm. The cost is assumed at £300 

as an average quotation in total. 

Electricity Tariff 

Economy 7 tariff is assumed applying to the 

household to maximize the system revenue by 

properly use the cheap electricity rate to 

support expensive hours. 

The day rate is 19.46 p/kWh, night rate is 6.99 

p/kWh.  

The export tariff used in this study is based on 

recent rate which is 5.24 p/kWh. 

Feed-in Tariff 

The FIT rate used in this study is 3.93 p/kWh 

which is the latest rate for system installed 

during 01/07/2018-30/09/2018 [20]. 

PV cost and battery cost 

The prices of various sizes of PV system used 

is listed in Table 1, and that for various sizes 

of battery is listed in Table 2. 

 

The system performance diagram for summer shows when 𝐸𝑔𝑟𝑖𝑑_𝑜𝑢𝑡7 is negative, the load can be fully 

provided by renewable energy, the remaining energy in the battery from the last day will support the 

demand between 00:00-07:00, then the excess energy will charge the battery when load is fully met. The 

export of energy between 07:00-10:00 is due to the configuration of the last day’s information, so part of 

the excess energy stored yesterday will export to the grid to balance early peak demand. Between 13:00-

17:00, when the battery is already fully charged, then the excess energy will be sold back to grid, the 
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amount is recorded by export meter. After that, the late peak demand appears between 17:00-21:00, thus a 

constant energy export is allowed for grid support. 

According to the data simulated for single pensioner household and with the chosen electricity tariff, 

the annual profit that the household can achieve can be calculated. The result shows the cost on electricity 

bill will reduce from £872.89 per year to £231.16 per year with the system installed, and the customer 

will make £42.62 profit from selling excess energy to grid at 5.24p/kWh. Thus, the domestic users can 

save £641.73 per year on overall cost of electricity, The payback period of the system can be calculated 

using the following equation: 

𝑝𝑎𝑦𝑏𝑎𝑐𝑘 =
𝑝𝑠𝑦𝑠𝑡𝑜𝑡

𝑝𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑜𝑡
      (9)  

Where  

𝑝𝑠𝑦𝑠𝑡𝑜𝑡 = 𝑝𝑏𝑎𝑡𝑡𝑒𝑟𝑦 + 𝑝𝑃𝑉 + 𝑝𝑖𝑛𝑠𝑡𝑎𝑙𝑙        

𝑝𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑜𝑡 = 𝑝𝑠𝑎𝑣𝑡𝑜𝑡 + 𝑝𝑒𝑥𝑝𝑜𝑡𝑜𝑡 + 𝑝𝐹𝐼𝑇𝑡𝑜𝑡      (10) 

𝑝𝑠𝑦𝑠𝑡𝑜𝑡  is the total system price including the price of battery system (𝑝𝑏𝑎𝑡𝑡𝑒𝑟𝑦), PV system (𝑝𝑃𝑉) and 

installation (𝑝𝑖𝑛𝑠𝑡𝑎𝑙𝑙). 𝑝𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑜𝑡 is the total profit gained by using the system. 𝑝𝑠𝑎𝑣𝑡𝑜𝑡  represents the total 

saving on electricity bills, 𝑝𝑒𝑥𝑝𝑜𝑡𝑜𝑡  is the total return from energy exportation, and since the ESS system is 

installed on the on the AC side of PV system, so FIT scheme is still eligible for the system to get paid,  

𝑝𝐹𝐼𝑇𝑡𝑜𝑡  represents the total return on feed-in tariff. The return on FIT in this study for 4kW solar system 

based on current FIT scheme is unique, which is £134.34 per year. 

The payback period of the system is 11.15 years as calculated, from the evaluation of the results, the 

system performance is proved reliable and the payback period seems reasonable for domestic users. The 

battery energy storage system was also applied to different types of household for further validation.  

 
(a) 
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(b) 

 Dashboard created in Excel for (a) data input and (b) result presentation 

4.2. Sensitivity analysis 

The performance of the system is evaluated in the form of payback period. As mentioned before, the 

system payback can be calculated from Equation (9), the total savings on bill, returns from grid export, 

and returns from FIT are most likely affected by the PV size and battery size. The total cost of system 

depends on the cost of solar energy system, battery banks and installation.  

Fig.10. shows how battery cost varies with the increasing battery size and how optimal annual benefit 

varies with the increasing battery size respectively. With the same 4kW PV, According to Fig.10.(a), the 

x-axis represents the range of battery capacity in kWh, and the y-axis represents the battery price in 

pounds (£). The curve shows a positive linear increase against battery size, the price increased from 

£290.16 for 1kWh capacity battery to £5222.92 for 20kWh battery.  

 

 
                                                         (a)                                                                                                       (b)                                                 
Fig.10. (a) Prices of battery for corresponding sizes and (b) Optimal system annual revenue for different sizes of 
battery 

However, the optimal annual benefit shows a logarithmic growth against battery size. In Fig.10.(b), 

when a system applied in single pensioner household is analysed as an example, the x-axis represents the 

range of battery capacity in kWh and the y-axis shows the annual revenue in pounds (£). It shows the 

revenue increases quickly in the beginning where the battery size increases from 1kWh to 5kWh and the 
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revenue increases 27%. Then the gains decrease as battery size increases further, the revenue increases 19% 

from £736.69 for 5kWh battery to £879.02 for 20kWh. The revenue will eventually saturates at £879.02, 

at which, the increasing battery size will no longer provide any more profits but only increases the system 

cost. The reason of this curve shape is mainly due to a fully charged 20kWh battery bank (during 

economy 7 hours) can cover the maximum energy demand from the grid for the household during the rest 

of the day. Moreover, the maximum excess solar energy from the system modelling shows 15.8kWh on 

the second day of week 21 for multiple pensioner household with 4kW PV system installed, so batteries 

with capacity larger than 16kWh will be able to store all of these energy for night usage and peak time 

export. Thus, the export profits will have advantage for batteries larger than 16kWh. With the fixed 

amount of FIT returns, according to the Equation (9), no further improvement will be obtained for a 

battery size beyond 20kWh. 

Thus, the bigger size of battery may not bring proportionally higher profits, but is definitely increasing 

the system cost. The payback periods of system with battery storage for full range of battery sizes were 

calculated and comparing with the original system payback time without ESS, to evaluate the marginal 

and optimal battery sizes for each size of PV system installed in different types of household.  

The sensitivity analysis is carried out using the algorithm shown in Fig.11. With the setup and 

assumptions listed in Table 3 and the costs of the range of batteries listed in Table 2, Table 4 shows the 

calculated system payback periods under different sizes of PV and battery setup for single pensioner 

household. The original system payback without battery is also listed. The range of battery sizes that can 

apply to the household are highlighted. It might not be suitable to integrate a battery system into the house 

if the overall payback period is longer than that without a battery bank. The optimal battery size which 

can have minimum payback is marked in red. Fig.12. shows the impacts of battery sizes on the system 

payback for various PV system.  
Take the example of single pensioner household, the minimum payback periods for PV system with 

size 1kW to 4kW are 8.99, 10.20, 11.35 and 10.52 years respectively with respect to 9.74, 11.35, 12.75 

and 11.40 years payback periods for system without battery storage. The new energy storage system has 

7.7%, 10.1%, 11.0%, 7.7% improvement on payback time for 1 to 4 kW solar systems installed 

respectively. Other sizes of system have higher payback periods due to limited utilisation of the larger 

systems or insufficient capacity to make further profits for the smaller systems. 

 

        𝑆𝑖𝑧𝑒𝑝𝑣 = 4; 
    𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 20; 
   𝑡𝑎𝑏𝑙𝑒𝐴 = 𝑧𝑒𝑟𝑜𝑠 (20,4); 
   𝑡𝑎𝑏𝑙𝑒𝐵 = 𝑧𝑒𝑟𝑜𝑠 (20,4); 
 

    𝑓𝑜𝑟 𝑗 = 1: 𝑆𝑖𝑧𝑒𝑝𝑣 

      𝑓𝑜𝑟 𝑖 = 1: 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

 

             𝑝𝑎𝑦𝑏𝑎𝑐𝑘 = 𝑝𝑠𝑦𝑠𝑡𝑒𝑚/ 𝑝𝑝𝑟𝑜𝑓𝑖𝑡_𝑡𝑜𝑡 

             𝑡𝑎𝑏𝑙𝑒𝐴(𝑖, 𝑗) =  𝑝𝑎𝑦𝑏𝑎𝑐𝑘  
 

             𝑖𝑓 𝑝𝑎𝑦𝑏𝑎𝑐𝑘 < 𝑝𝑎𝑦𝑏𝑎𝑐𝑘𝑜𝑟𝑔 

                 𝑡𝑎𝑏𝑙𝑒𝐵(𝑖, 𝑗) =  1  
             𝑒𝑙𝑠𝑒  

                     𝑡𝑎𝑏𝑙𝑒𝐵(𝑖, 𝑗) =  0  
             𝑒𝑛𝑑 𝑖𝑓 

 

       𝑒𝑛𝑑 𝑓𝑜𝑟 

       𝑚𝑖𝑛𝑝𝑎𝑦𝑏𝑎𝑐𝑘 = min(𝑡𝑎𝑏𝑙𝑒𝐴) 

 

    𝑒𝑛𝑑 𝑓𝑜𝑟

 

Fig.11. System payback evaluation algorithm 

Table 4.

 

Payback periods for

 

single pensioner 
household with various sizes of PV and battery 
system

PV size

 

Battery size 

 

1kW

 

2kW

 

3kW

 

4kW

 

No battery

 

1kWh

 

2kWh

 

3kWh

 

4kWh

 

5kWh

 

6kWh

 

7kWh

 

8kWh

 

9kWh

 

10kWh

 

11kWh

 

12kWh

 

13kWh

 

14kWh

 

15kWh

 

16kWh

 

17kWh

 

18kWh

 

19kWh

 

20kWh

 

 

9.74 yrs.

 

10.51 yrs.

 

9.99 yrs.

 

9.58 yrs.

 

9.29 yrs.

 

9.02 yrs.

 

9.00 yrs.

 

9.07 yrs.

 

9.19 yrs.

 

9.36 yrs.

 

9.53 yrs.

 

9.58 yrs.

 

9.80 yrs.

 

10.04 yrs.

 

10.30 yrs.

 

10.62 yrs.

 

10.93 yrs.

 

11.00 yrs.

 

11.33 yrs.

 

11.69 yrs.

 

12.07 yrs.

 

11.35 yrs.

 

11.60 yrs.

 

11.04 yrs.

 

10.60 yrs.

 

10.35 yrs.

 

10.20 yrs.

 

10.25 yrs.

 

10.36 yrs.

 

10.49 yrs.

 

10.63 yrs.

 

10.82 yrs.

 

10.86 yrs.

 

11.04 yrs.

 

11.25 yrs.

 

11.50 yrs.

 

11.78 yrs.

 

12.05 yrs.

 

12.12 yrs.

 

12.42 yrs.

 

12.75 yrs.

 

13.10 yrs.

 

12.75 yrs.

 

12.75 yrs.

 

12.16 yrs.

 

11.72 yrs.

 

11.49 yrs.

 

11.35 yrs.

 

11.38 yrs.

 

11.45 yrs.

 

11.57 yrs.

 

11.72 yrs.

 

11.88 yrs.

 

11.92 yrs.

 

12.10 yrs.

 

12.30 yrs.

 

12.53 yrs.

 

12.78 yrs.

 

13.03 yrs.

 

13.11 yrs.

 

13.39 yrs.

 

13.69

 

yrs.

 

14.01 yrs.

 

11.40 yrs.

 

11.49 yrs.

 

11.04 yrs.

 

10.74 yrs.

 

10.61 yrs.

 

10.52 yrs.

 

10.58 yrs.

 

10.68 yrs.

 

10.83 yrs.

 

10.98 yrs.

 

11.15 yrs.

 

11.21 yrs.

 

11.40 yrs.

 

11.61 yrs.

 

11.83 yrs.

 

12.07 yrs.

 

12.32 yrs.

 

12.41 yrs.

 

12.67 yrs.

 

12.95 yrs.

 

13.24 yrs.

 

839



 

 

 

Fig.12. Payback periods of various battery sizes for different sizes of PV system installed in Single pensioner 

household  

Table 5. Minimum system payback period and optimal battery size for different household types with different sizes 

of PV system coupled.  

 

Same simulation applied to different types of household provides similar results as shown in Table 5. 

Due to the dramatic impact of battery price on the system performance, the shortest payback periods for 

various sizes of PV system in different households are showing between integrating with 5kWh and 

6kWh battery systems. The cost of lithium-ion battery packs is reducing 25% from 2009 level to 2014 [21] 

according to the research , hence the results will improve due to lower battery price with passing time, the 

system payback time will reduce and the optimal system size will increase. Thus, the customers will tend 

to buy larger size of battery systems in the future for better energy self-sufficient. 

4.3. Contributions and future work 

This paper introduced an accurate approach to simulate domestic load profiles. Battery discharging 

algorithm was developed for the energy storage system, optimal battery sizes for different sizes of PV 

system in different types of household were evaluated with tariff incentives. 

With the benefit of battery discharging algorithm, the system can lower the users’ expenditure on 

electricity bills, and also make money from energy exportations. Energy self-sufficiency achieved by 

applying this system can effectively support the peak demand of the grid. System behaviour in practice 

will be monitored for further validation and development.   

According to the results presented, the system was validated for all types of households in the UK with 

different sizes of PV-battery setups. Thus, with more households installing this system in a typical area, a 

large scale energy storage system can be integrated by connecting those household battery systems. Then 

it can be used for electric vehicle charging and grid reserve services. Moreover, communication and 

control of systems within a community is another research topic in order to achieve higher efficiency on 

energy utilisation.   

5. Conclusion 

Previous sections illustrate the work have done on solving challenges outlined in section 2. First, 

domestic load profile modelling was introduced to simulate hourly energy consumption throughout a day 

PV size 

Household  type 

1kW 2kW 3kW 4kW 

Single pensioner household 
Single non-pensioner household 

Multiple pensioner household 

Household with children 
Multiple person household with no 

dependent children 

9.00 yrs. (6kWh) 
8.98 yrs. (6kWh) 

9.09 yrs. (6kWh) 

8.93 yrs. (6kWh) 
8.88 yrs. (6kWh) 

10.20 yrs. (5kWh) 
10.18 yrs. (5kWh) 

10.35 yrs. (5kWh) 

10.14 yrs. (5kWh) 
10.03 yrs. (5kWh) 

11.35 yrs. (5kWh) 
11.32 yrs. (5kWh) 

11.53 yrs. (5kWh) 

11.28 yrs. (6kWh) 
11.14 yrs. (5kWh) 

10.52 yrs. (5kWh) 
10.50 yrs. (5kWh) 

10.69 yrs. (5kWh) 

10.46 yrs. (5kWh) 
10.34 yrs. (5kWh) 
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in typical residential household. Goldsim simulation is realistic since it uses real world hourly load profile 

for each appliance. A dashboard was created in Goldsim, by entering information such as household type, 

week of the year, which day of the week and the type and number of appliances owned in the house, the 

system can precisely generate hourly electricity consumption for different situations. Thus Goldsim 

simulation was used to produce domestic load profile for this study. Then PV profile was generated to 

couple with load profile, in order to size the battery. An optimised smart energy storage system and its 

control algorithm have developed to manage domestic energy usage and improve grid stability by 

exporting excess energy back to grid during high demand hours. The results were validated to show the 

system can reduce the cost on electricity bills. The payback periods of installing such a system were 

evaluated under different sizes structures. The optimal battery size was found for each size of PV system 

installed in each type of household, the marginal sizes of battery were found to ensure the acceptable 

improvement in total system payback periods. The shortest payback periods appear between 5kWh 

battery and 6kWh battery systems. Due to logarithmic growth on system revenue, the system has a higher 

payback periods due to limited utilisation of larger systems and insufficient capacity to make further 

profits for smaller system. 
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