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Abstract 

Predictability has been foundational to matching supply and demand in the day-to-day operation of the electric power 

system. Demand predictability is eroding because of the increased use of renewable energy resources and more 

sophisticated loads, such as electric vehicles and smart appliances. In this paper, an automatic software framework is 

described which can be used for load forecasting in smart communities. A time-varying clustering-based Markov 

chain approach is used to predict the energy consumption of residential buildings in a smart community. The training 

data is based on 1-minute meter data of occupied homes over one month. The data points are first clustered based on 

the energy consumption and the time of the day. Then, the original data is converted using the Centroids of the 

clusters. A time-varying Markov chain is subsequently trained to model the energy consumption behavior of residents 

for each home using the transformed data. The trained model is shown to successfully predict load in 5-minute 

intervals over a 24 hours period.  
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1. Introduction 

The internet of things (IoT) has revolutionized the world of intercommunications. In the last decade, 

numerous smart devices have been introduced ranging from wi-fi connected thermostats to water heaters 

and electric vehicle chargers to name a few. Most of the intelligent device incorporation has been adopted 

in the residential sector which is a major energy consumer in the United States (U.S.). Based on a report 

by the department of energy (DOE), 40% of primary energy consumption in the U.S. is attributable to the 

building sector, which shows the significance of saving energy in buildings [1]. 

The integration of smart devices into the residential sector has shed light on a potential future of utility 

engagement with homeowners: energy consumption can be optimized to support the utility and the 

homeowner can be compensated. However, communications, control, and optimization supporting 

software must be developed.  

The first step is designing and implementing a stable and secure software framework that can provide 

seamless system integration, communication, and control. Significant research has been done in this area 

and the key specifications for an energy management system (EMS) have been identified [2][3][4]. An 
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EMS should 1) be able to handle communication and control of different devices utilizing different 

communication protocols, 2) provide forecasting of the resources and integrated systems, 3) be able to 

handle the computational cost associated with running different optimization algorithms for supporting 

demand response (DR), and 4) be capable of handling a large amount of data efficiently and securely. All 

of these features support wide adoption and integration with utility systems in moving to a smart grid.  

The smart grid is adopting increased quantities of distributed renewable generation while attempting to 

be more resilient and reliable. As a result, increased flexibility and better forecasting are becoming more 

important in day-to-day operations. Hence, building systems that can provide forecasting support with an 

EMS are crucial to ensuring continued growth. 

Because of the importance of accurate load forecasting, extensive research has been carried out for 

decades to predict the electrical consumption of a geographical location over different time periods [5][6]. 

These methods can be categorized into short-term, medium-term, and long-term forecasts. Short-term 

refers to prediction from one hour to one week, medium-term refers to one week to one-year forecast, and 

any prediction for more than one year is known as a long-term forecast. 

Regression methods are one of the most common statistical methods used [7][8][9]. The idea is to 

model the relationship between energy consumption and other factors such as weather, solar irradiance, 

seasonal changes, annual load growth, etc. The accuracy of such methods relies on adequate historical 

data and high correlations between data sets.  

Exponential smoothing is another approach used for load forecasting [10]. Historical data is used to 

build a model that can predict the future load. This method has been enhanced by converting the general 

exponential smoothing model by a finite Fourier series and conducting an adaptive autoregression 

modeling technique to account for changes in load component [11]. 

Support Vector Machines (SVM) is another method used for forecasting. This is done by analyzing the 

data, finding the pattern, and performing classification and regression analysis. SVM has shown better 

performance than the direct application of artificial neural networks (ANN) [12]. SVM has been coupled 

with Simulated Annealing Particle Swarm Optimization (SAPSO) algorithms that parameterize variables 

within SVM for improved accuracy and convergence [13][14]. 

Deep neural networks (DNN) have also been employed for load forecasting [15][16]. However, these 

methods require significant historical data and are computationally expensive to train. Other approaches 

used for load forecasting are fuzzy logic (FL) algorithms, evolutionary algorithms (EA), and different 

forms of ANN. In many cases, these systems can be hybridized to create new load forecasting approaches 

and improved accuracy. In [17], an unsupervised learning is first used to cluster the data and then a 

supervised learning is used on the clusters for forecasting. 

 

Fig. 1. View of reynolds landing at ross bridge, smart neighborhoodtm. Image: southern company.  

This paper is organized as follows: Section 2 summarizes the objective of the project, Section 3 

explains the software architecture used for developing the automatic learning framework, Section 4 

describes the load forecast algorithm used and the data it was applied to, Section 5 provides results for 

applying the algorithm to the data, and Section 6 contains conclusions and future work. 
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2. Background 

In a collaborative project between Oak Ridge National Laboratory (ORNL) and Southern Company, a 

distributed, residential, cloud-based EMS has been developed and deployed. This system is operating on a 

community composed of sixty-two occupied single-family homes supported by a microgrid (Fig. 1). Each 

home is equipped with intelligent wi-fi connected devices that provide data and control to cloud-based 

systems. For this project, the main controllable loads in the homes are the heating, ventilation, and air 

conditioning (HVAC) and water heater devices. All electric circuits within the homes are sub-metered, 

collected, and stored in databases, in real-time, through cloud services via smart metering systems that 

record at 1-minute resolution. This data is accessible by the EMS through the utility Representational 

State Transfer (REST) Application Programming Interface (API). 

 

Fig.

 

2. Microgrid generation resources. Image:

 

Southern Company.

 

The community also hosts a microgrid for improving electric power delivery. The microgrid consists of 

photovoltaic panels, a lithium ion-based

 

energy storage system, and a natural gas generator (Fig.

 

2).

 

With 

these resources, the microgrid can island the neighborhood during a grid outage. This microgrid controller 

(MC) has been retrofitted

 

with an optimization routine used to adjust a 24-hour price signal in order to

 

achieve a desired

 

load shape.

 

Likewise, the EMS in the individual homes optimizes the house loads to 

minimize cost based on the price forecast provided by the MC. This negotiation process with the price 

signal and the load between the MC and homes is repeated

 

until the MC finds an acceptable point of 

convergence. The homeowner load forecast prediction algorithm

 

is discussed

 

in Section 4.

 

3.

 

Software Architecture

 

 

Fig. 3. Framework overall software architecture

 

A multi-agent system (MAS) architecture has been developed and is used

 

for developing

 

the software 

framework discussed in this paper. Here, the MAS is a community of cloud-based software agents that 
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coordinate the decision-making process to satisfy the overall system objective and reduce electricity costs 

[18].  

The developed software framework consists of three main cloud-based instances: 1) Home Instance, 2) 

Aggregator Instance, and 3) Learning Instance (Fig. 3). Each instance supports some basic functionality 

which is described in the following paragraphs. A back-bone utility system exists that links and 

anonymizes resident system credentials through a participant ID with Virtual Machine (VM) name along 

with device credentials and meter data.  

The Home Instance has an association with each home and performs the functions of the residential 

building EMS optimization and control. To support these features, the Home Instance utilizes a home 

interface, device interface, optimization, and learning interface agents. Credentials for each home are 

unique and are automatically pulled from a utility interfacing RESTful API and distributed through local 

agent communications via the home interface agent. The device agents (HVAC and water heater 

interfaces) communicate to the devices through the vendor APIs and perform data collection and control 

dispatch. The optimization utilizes device data such as user schedules and current states and a model 

predictive control formulation to determine the optimal control dispatch against a 24-hour price signal 

provided by the MC. 

The Aggregator Instance behaves as the neighborhood medium and provides data exchange between 

each residential EMS and the MC. The Aggregator Instance collects the reported optimal results from 

each residential level EMS and formulates the output to the MC for decision making. The aggregator also 

collects data sets from the utility RESTful API and MC for distribution to each EMS for optimization 

including price signal and weather forecasts (solar irradiance and temperature).  

The Learning Instance attempts to tune and predict different data sets associated with the system. These 

datasets are for two purposes, provide more accurate total load forecasts for the MC optimization and to 

support local residential EMS optimization decision making. There are four agents associated with this 

instance: 1) Learning Interface, 2) CMarkov, 3) Building Model, and 4) Water Draw. The agent basic 

functionality for these agents is described in Table I. This paper will focus on the CMarkov agent which 

is responsible for non-controllable load forecasting and internal heat load estimation.  

The Learning Interface gets the credentials for all the homes so it can query their metering data. At the 

initialization of the Learning Instance, two weeks of metering data for each home is queried from the 

utility RESTful API. This data includes the metering of different circuits in the home in 1-minute 

intervals. CMarkov Agent uses a time-varying clustering-based Markov approach to learn the energy 

consumption pattern of the home and utilize that for load forecasting. The algorithm is explained in 

Section 4. The load forecast for the next 24-hours is calculated based on the learning algorithm for each 

home and the result is sent back to the utility RESTful API, so each Homes Instance can query that and 

utilize it in its algorithms and forecast. After the learning is done for two weeks of data, another set of 

data is queried from the utility RESTful API each day and appended to the previously queried data, and a 

new training is done based on the new data set.  

Table 1. Summary of Agents along with their role in the software framework 

Learning Instance 

Learning Agent Queries the utility RESTful API to get the credentials for all the homes in the 

neighborhood and query the utility RESTful API to access the homes’ data. It is also 

responsible to communicate the learning forecast back to the API so individual homes 
can access them. 

CMarkov Agent Utilizes a time-varying clustering-based Markov model to forecast the energy 

consumption and the internal heat load for each home. 

BuildingModel Agent Trains a building model to estimate the building parameters using weather data, metering 
data, and HVAC data. 

WaterDraw Agent Trains a model to predict the water draw for each home in the neighborhood. 

 

All instances are running on a utility Microsoft Azure© cloud server hosting Ubuntu-based single core 

machines with 2 GB of random access memory (RAM). Each instance utilizes VOLTTRON
TM

 as the 
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agent platform which uses a Python-based backbone and enables compiling, packaging, running, and 

managing different agents [19]. All these instances are communicating with the utility RESTful API for 

retrieving data and sending control commands. 

4. Load Forecast  

The development of a load forecast and heat load profile consists of several steps: 1) data retrieval and 

processing, 2) time-varying clustering-based Markov model development, and 3) application of the 

trained model for load forecasts. In the following sections each step is discussed.  

4.1.  Data retrieval and processing 

The data used for training and validating the load forecasting is the metered circuit-level data from 

homes in the neighborhood. This data is available in 1-minute intervals. The circuit-level data includes 

the measurement for the main circuit, air conditioning, condenser unit, air handler, electric heat, electric 

vehicle charger, oven, dryer, water heater, dishwasher, outlets, refrigerator, ventilator, lighting, disposal, 

microwave, and smoke detector.  

The data is first processed for anomalies: 1) missing data or erroneous data (high values that were 

falsely recorded) is replaced with interpolation, and 2) data with incorrect time-stamps is removed. As 

mentioned in Section 3, the load forecast algorithm should forecast non-HVAC and non-water heater 

loads (non-controllable loads) and the internal heat load. For performing the learning algorithm for 

predicting the non-HVAC and non-water heater loads and internal heat load, the metered data input is 

summed by category as: 

 Pt
OL = Pt

Main - P
t
EH - P

t
WH - P

t
CU - P

t
AH  (1) 

 Pt
IHL = Pt

Main - P
t
Dryer - P

t
EV - P

t
WH - P

t
CU  (2) 

where P
t
OL is the value of non-controllable load for timestep t, P

t
Main  is the power reading for the main 

circuit at timestep t, P
t
EH  is the power of electric heat for current timestep t, P

t
WH  is the power reading for 

water heater at timestep t, P
t
CU  is the power reading for condenser unit at timestep t, P

t
AH  is the power for 

air handler at timestep t, P
t
Dryer is the power for electric dryer at timestep t , P

t
EV  is the power for the 

electric vehicle charger at timestep t, and P
t
IHL is the power for the internal heat load at timestep t. 

This is done for all the metering data for each minute and then the algorithm is trained over the calculated 

values. Fig. 4 shows the pattern of the load consumption for a home in the neighborhood based on one 

month of metered data in May. 

 

Fig.
 
4. (upper diagram) The pattern of the energy consumption for non-HVAC and non-water heater loads (lower diagram) Pattern 

of the energy consumption for internal heat loads.
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4.2. Time-varying clustering-based markov chain algorithm 

The method for developing 24-hour non-controllable load forecasts and internal heat load estimations 

in this paper is based on a time-varying clustering-based Markov chain model. A Markov chain is a 

stochastic model of a sequence of events in which the probability of the next event only depends on the 

current event. That is,  

 Pr (Sn+1 = s | S1 = s1, ..., Sn = sn) = Pr (Sn+1 = s | Sn = sn) (3) 

where Si denotes a random variable and si is the value that it takes on. The latter is also referred to the 

state of the Markov chain. In a Markov chain model, the transition probability only depends on the 

current state and it is independent of all the proceeding sequence of states. In our proposed algorithm, the 

state of the Markov model is determined by applying k-means clustering on the data and group the data 

based on their similarity in energy consumption for the time of the day. This is an example of 

unsupervised learning which partitions the data into k clusters by minimizing the following objective 

function: 

 arg minD Ʃ
k
i=1 ƩxϵD ||x - si||

2  (4) 

where ||x - si||
2
 is a chosen distance function, D is the set of data points, and si  is the centroids of the 

clusters. After the clusters are identified, then each of the data points are transformed by fitting the data to 

their clusters and transforming them using the centroid of the cluster they belong to.  

In a Markov model, the sequence starts with a state and moves to another state in the next step. Let the 

cluster centroids denote a set of k states, i.e., S = {s1 ş2 .̧.. şk}. The probability of transitioning from one 

state to another is given by a k x k transition matrix where entry pij shows the probability of moving from 

state si, to state sj. In this algorithm, a transition matrix is calculated for each minute of the day using the 

transformed data. For example, a transition matrix from 0-1, 1-2, …, 1439-1440. The centroids of the 

clusters are used as the states for the transition matrices. The result would be 1440 matrices of size 50x50. 

A sample transition matrix for minute 309 can be seen in Fig. 5. Each entry pij in this matrix shows the 

probability to move from state i at minute 309 to state j at minute 310. 

 

 

Fig. 5. A sample of a time-varying Markov chain transition matrix for minute 309. 

4.3. Using the transition matrix to create a forecast. 

The transition matrices computed in the previous section are used to predict the energy consumption 

for the following minute, given current minute data. For prediction, if the current time step is t, then the t
th 

transition matrix is used, Pt. The current value for the metering data at time t, is first fitted using k-means 

clustering and the centroid of the cluster is used as its new value, mt. Then the index of the maximum 

value in mt Pt is the value of the predicted power consumption in the next time interval, t+1. Depending 
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on the time horizon of the load forecast, one or multiple transition matrices will be used. For examples, if 

we are at time t, and the goal is to predict the value in the next m minutes, the following formula can be 

used: 

 xt+m = mt Pt Pt+1 … Pt+m (5) 

where mt is a vector with its t
th

 value be one and the rest be zero, Pt  is the transition matrix at time t. The 

index of the maximum value of x
t+m

 is the next state that the sequence will transition and the forecasted 

value for the load. 

5. Results 

5.1. Training based on historical data 

For training and validation, one month of data for a home in the neighborhood in the month of May is 

used as a reference. Based on some initial analysis over accuracy versus number of clusters, k=50 is used 

as a candidate for k in k-means clustering and identifying the centroids. The result of applying the 

clustering on a home in the neighborhood is shown in Fig. 6. The red dots in the figure represent the 

centroid of the clusters and each color represents a different cluster. 

 

 

Fig. 6. The result of applying k-means clustering on one month of data for a home in the neighborhood. 

The data is then transformed by fitting the data points to clusters. Then, time-varying Markov chain 

transition matrices are computed based on the transformed data for each minute. 

As explained in Section 4.3, for prediction, if the current time step is t, then the t
th 

transition matrix is 

used, Pt. The current value for the metering data at time t is transformed using the k-means clustering 

model, mt. Then the index of the maximum value in mt Pt is the value of the predicted power consumption 

in the next time interval, t+1. The training is done using 74% of the data. Then the trained model is 

validated using the remaining 26% of the data. The root mean square error (RMSE) and mean error (ME) 

is computed for a minute prediction for an entire day for each of the 8 days used as part of the validation 

data for a house in the neighborhood. Only 6.04% of the prediction data have an error above 200 W and 

89.02% of them have an error below 100 W for one-minute prediction for a whole day. The result is 

shown in Fig. 7. 
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Fig. 7. The RMSE and ME result for the whole day prediction using the time-varying clustering-based Markov algorithm. 

The resulting load prediction with 5-minute interval for the whole day is shown in Fig. 8. Based on the 

result, 3.33% of the data points have an average error of 200 W or more and 90.83% of the data points 

have an average error less than 100 W. 

 

 

Fig. 8. The value for ME for the 5-minute load prediction for the whole day.  

5.2. Field evaluation and testing  

The Learning Instance was deployed and running on a single core VM with 2 GB of RAM over the 

utility cloud server for more than a month. The Learning agent first queries the utility RESTful API to get 

the credential of all homes in the neighborhood. Then, it queries two weeks of metered circuit-level data 

from the utility RESTful API for each home. The CMarkov agent uses this data for training the time-

varying clustering-based Markov chain model. After the Markov transition matrices are computed for 

each minute for both internal heat loads and non-controllable loads, then the agent uses the latest metered 

data and provides a load forecast from midnight to the end of the following day. It then returns the load 

prediction to the utility RESTful API so the agents in the Home instance can use this prediction result. 

This includes a day-ahead load prediction for each home in 5-minutes interval, an array of size 288. 

The result of forecast for an actual home in the neighborhood can be seen in Fig. 9 and Fig. 10. The 

time uses for both in the training data and forecast data is based on Coordinated Universal Time (UTC). 

Note that 91.66% of load forecast for non-controllable loads have an error of less than 400 W. And 

92.01% of the forecast for internal heat load have an error less than 400 W. The average error for internal 

heat load forecast is 185.54 W and the average error for non-HVAC and non-water heater load is 313.18 

W.  
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In Fig. 9 and Fig. 10, the maximum error is between midnight UTC and 1:05 AM UTC. After looking 

at the actual metered data for this period, we noticed that the dryer was the major load running in that 

period. We are planning to solve this by performing additional data analysis to find the pattern associated 

to each activity and utilize the identified patterns for improving the accuracy of the load forecasting 

algorithm. 

 

Fig. 9. Day-ahead forecast for non-HVACWH loads for a home in the neighborhood. 

 

Fig. 10. Day-ahead forecast for internal heat load for a home in the neighborhood. 

6. Conclusion and Future Work 

In this paper, an automatic learning framework for smart residential communities is described and field 

evaluated. This framework is automatically collecting data for occupied homes in a smart neighborhood 

using the utility RESTful API. A time-varying clustering-based Markov chain approach is presented 

which is applied to the data collected at the circuit-level for each of the homes. The result is a day-ahead 

load forecast for each home so the optimizer and microgrid controller can utilize this information in their 

decision-making process. 

The accuracy of the forecast for sample homes in 1-minute interval, 5-minutes interval, and a day-

ahead forecast is presented. The algorithm shows an error of less than 400 W about 90% of the time for 

short-term forecasting. However, we are expecting to improve the accuracy by differentiating between the 

day of week, holidays, and taking weather data into account. Also, for clustering, we will apply other 

distance functions such as dynamic time wrapping for better time-series clustering and to achieve better 

accuracy.  
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