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Abstract 

To realize a low-carbon society, we identified the issues that need to be addressed to construct a zero-carbon power 

system in Japan. First, based on the estimation of future technology development, we constructed technology 

scenarios using the manufacturing technology database developed by the Center for Low Carbon Society Strategy 

(LCS). Second, the power system was evaluated using the optimal multi-region power generation model of cost 

minimization, considering system stability under various constraint assumptions. We found that, in addition to the 

limitations imposed by the technological development of renewable energy, grid enhancement and the system 

stability constraint have the greatest influence on power generation cost to achieve a zero-carbon power system. 

Furthermore, it was shown that, as the demand for electricity increases, it becomes difficult to achieve zero emissions, 

and the development of renewable energy technologies that contribute to system stability such as hot dry rock 

geothermal energy becomes important. 
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1. Introduction 

The use of renewable energy is rapidly expanding due to reduced costs of renewable sources and 

storage battery systems, but the electric power grid system will become unstable with the large-scale 

introduction of renewable energy. In particular, there is a concern that the inertial force, which was 

conventionally supplied by thermal power generation, will be insufficient to ensure system stability as 

renewable energy becomes the main power source. If the inertia force is insufficient, the frequency drops 

sharply and causes a large-scale blackout when the balance of supply and demand suddenly breaks down 

due to such as a ground accident. Several studies have evaluated power generation system costs and 

technical issues related to a large-scale introduction of renewable energy. The impact of increased SNSP 

(system non-synchronous penetration) is being evaluated in Ireland and other European countries[1-4]. 

On the other hand, there are few studies that simultaneously evaluate renewable energy technology 

(present and future), economic efficiency of large-scale introduction of renewable energy, and system 

stability including the effect of changing the amount of inertial power generation in the grid.  

The Center for Low Carbon Society Strategy (LCS) has developed an optimal power generation model 

to evaluate power costs under CO2 emission constraints, while considering the system stability. The 

model enables quantitative evaluation of renewable energy technology scenarios, including technological 

development issues under various future social scenarios. In previous studies, we have evaluated the 

economic efficiency of reducing electricity-originated CO2 emissions by 80% or more under an electric 

energy demand of 1000 TWh/y at costs equivalent to current rates, and have shown the possibility of 
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using technology to achieve zero emissions[6-9]. In the present study, we evaluated the economic 

efficiency and technical problems of a zero-carbon power generation systems, considering electricity 

demand, system stabilization technology, and renewable energy technologies. First, based on estimations 

of future technology development, we constructed technology scenarios using the manufacturing 

technology database developed by the LCS. Second, the power system was evaluated using the optimal 

multi-region power generation model of cost minimization considering system stability under various 

constraint assumptions such as CO2 emissions reduction rate, power demand, the technology level of 

renewable energy and storage systems, reinforcement of the transmission grid and grid stability 

constraints.  

2. Methodology 

2.1. Economic evaluation method with optimal multi-regional power generation model 

In this study, we examined the relationship between electric power cost and CO2 emissions of a power 

generation system having a high ratio of renewable energy, considering future technological 

developments. This methodology enables a quantitative estimate of the economic effects of technological 

development and identifies the issues inherent in achieving CO2 emission reduction targets. 

We evaluated the economics of low-carbon power generation systems under different technology 

scenarios, using an optimal multi-region power generation model which considers system stability. The 

evaluation method using the model developed by LCS has the following features. 1) Quantitative 

technology scenarios were developed that consider future renewable energy technologies. 2) Under the 

constraints of CO2 emissions, the capacities of power generation systems, storage battery systems and 

hydrogen turbine systems were optimized as endogenous variables. 3) As constraint assumptions of 

system stability, in addition to supply-demand balance and short term fluctuation adjustment, we 

determined the fraction of the power system that can supply the inertial force necessary to overcome 

supply-demand imbalances as the transient stability constraint. Each feature is specifically described 

below. 

2.2. Technology scenarios considering future technology development of renewable energy and storage 

systems 

With regard to renewable energy technology, we used technology scenarios developed by LCS, which 

has analyzed the current and future technology and cost reduction potential for solar, wind, small and 

medium hydropower, biomass, geothermal power, and storage battery systems[9-12]. 

In this method, the costs of future renewable energy technologies are calculated for an estimated 

technology level including the index of performance, manufacturing technology etc. We aggregated the 

results of estimated costs of equipment, labor, raw materials, and utilities required for manufacturing each 

type of renewable energy power system based on the equipment database of LCS. Here, we estimated the 

technologies that could be realized by 2030 as technologies introduced and spread in 2050.  

2.3. Model configuration and endogenous variables 

This optimized multi-regional power generation model uses linear optimization programming and 

minimizes the total cost of power generation under the constraints of CO2 emissions and power demand. 

The principal parameters of the model are the type of power supply, the amount of available battery 

storage, and the capacity of electrolysis and hydrogen turbines in the system, which are characterized by 

using these as endogenous variables. Carbon capture and storage (CCS), imported biomass and imported 

carbon free hydrogen are not included in this analysis. Japan is divided into 10 regions by the major 

electric power companies. In this model, power supply and demand levels were estimated using hourly 

data of power consumption in each region. The daily load curve was classified into seven representative 
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days according to the seasonal characteristics. Hourly output of photovoltaic (PV) and wind power 

generations were estimated using climate data for one year at several tens of locations around Japan. For 

inter-regional transmission, in addition to the use of existing transmission lines, the enhancement cost of 

transmission line capacity is estimated. 

2.4. Constraint assumptions for stabilizing the grid system 

With the large-scale introduction of renewable energy, it is necessary to implement load frequency 

control of short-term fluctuations in voltage and frequency, and mitigation of long-term seasonal 

fluctuations, both of which are currently performed by thermal power generation systems. In addition, the 

power output via an inverter such as a solar power generation system or a wind power generation system 

cannot provide an inertial force to stabilize the grid system. Therefore, it is also necessary to ensure the 

stability of the system to prevent a large scale blackout due to a ground accident etc.  

Constraint assumptions on system stability include load frequency control (LFC) constraints and 

transient stability constraints in addition to supply-demand balance constraints. The supply-demand 

balance constraint is a constraint in which the amount of power consumed for each one-hour data period 

and the actual amount of power generation excluding losses are always balanced. The LFC constraint is 

one-hour fluctuation rate of renewable energy and demand by power source type and region. It is a 

restriction that calculates and supplies a degree of fluctuation suppression. A transient stability restriction 

is a one that sets the fraction of electricity supplied by synchronous generators (i.e., rotating steam and 

gas turbines) which can provide inertial force. It is referred to as the "inertia fraction", which is the rate of 

power output provided by synchronous generator, in this paper. At present, an inertia fraction of 50% or 

more is required, and it should be possible to reduce the ratio by improving the system stabilization 

technology. 

2.5. Technology scenarios to evaluate zero-carbon power generation systems 

The power demand, renewable energy technology, and system stabilization technology are set as in the 

following. CO2 emissions were evaluated for power systems under the constraint of 70% to 100% 

reduction toward zero-carbon power systems. Although energy conservation is progressing, it is expected 

that future electricity demand will increase. For this reason, we evaluated the power generation system 

assuming electricity demand ranging from 700 to 1400 TWh/y (the current electricity demand in Japan is 

about 1000 TWh/y).  There are two cases of nuclear power capacity considered which can produce zero 

or 200 TWh annually. As a new technology that contributes to system stability, two cases of introducing 

hot dry rock (HDR) geothermal power generation [12] with annual power output of 100 or 200 TWh were 

also evaluated. The additional cost of the transmission grid was calculated based on the cost of upgrading 

the inter-regional transmission line at 150 Yen/kW/km. In this paper, we evaluated two cases of inertia 

fraction: one at the 50% level currently required, and a second with an inertia fraction of 25%, assuming 

technology improvements to stabilize grid systems. 

3. Results and Discussion 

First, we show the impact of power consumption and technology scenarios. Fig. 1 shows the maximum 

potential for CO2 emission reduction versus annual electric power demand. By enhancing the current grid, 

in the case of the electricity demand of 1000 TWh, the CO2 emission reduction is 83% (case a). In the 

case of the enhanced current grid, a 90% reduction in CO2 emission is achievable (case c). Zero emissions 

can be achieved in the case of a power demand of 1000 TWh with the inertia fraction lowered from 50% 

to 25%(case d,f). On the other hand, at 1200 TWh or more of electricity demand, CO2 emissions of the 

power supply system can only be reduced by 98% even in the HDR 100 TWh introduction case with an 

inertial force ratio of 25% (case f). The results show that, in order to achieve a zero-carbon power system, 
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we need technological developments that contribute to grid reinforcement and grid stabilization in 

addition to the technological development of renewable energy. Furthermore, it is clear that it becomes 

difficult to achieve zero emissions as the demand for electricity increases. The development of renewable 

energy technologies that contribute to system stability such as hot rock geothermal energy becomes 

important. 

 

 

Fig. 1. Relationship between CO2 reduction potential and power demand, highlighting the effect of the inertial force 
power fraction on the amount of CO2 reduction  

Second, we show the results of power cost modeling, for cases of electricity demand from 800 TWh to 

1200 TWh, which can achieve zero emissions in the year 2050 (Table1). An 80% reduction of CO2 

emissions originating from power generation can be realized at almost the same cost as current power 

generation systems (Case 1). Achievement of zero emissions can be realized when the inertial force 

fraction is 25% (Cases 2 To 5). For the case of zero nuclear power and zero HDR geothermal power, the 

power cost is 14.3 and 16.5 yen / kWh at an electricity demand of 800 TWh / y (Case 2) and 1000 TWh / 

y (Case 4), respectively, while the current power cost is 12.9 yen/kWh.  

As for the installed capacity of a photovoltaic power generation system, the potential of the possible 

installation area is insufficient at the existing conversion efficiency, so it is necessary to develop the 

technology aiming at 30% of the conversion efficiency. In addition, the required amount of storage 

batteries required for daily operation exceeds 800 GWh. Furthermore, in order to introduce a wind power 

generation system on a large scale for a zero-carbon power supply system, it is necessary to increase the 

electricity power transmission lines from Hokkaido and Kyushu which are far from the central area where 

the demand is large. Because of such large-scale power transmission issues, the capacity of the 

transmission line will need to be more than 10 times the existing capacity. 

Furthermore, when 100 TWh/y of HDR geothermal power generation is introduced into the system, 

the power generation cost becomes 11.1 yen / kWh at 1000TWh of electricity demand (Case 3). However, 

electricity demand of 1200 TWh can only be achieved with a CO2 reduction of 98% (Case 6). The 

introduction of 200 TWh of geothermal energy (Case 5) makes it possible to lower the cost of power 

generation to the current level or less. 
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Table 1. Power Cost of each case to achieve zero CO2 emission 

Case 1 2 3 4 5 6 7 

Power demand 100 800 1000 1000 1200 1200 1200 
Inertia fraction 50% 25% 25% 25% 25% 25% 25% 

CO2 reduction rate 80% 100% 100% 100% 100% 98% 90% 

HDR introducing (TWh/y) 0 0 100 0 200 100 0 

Generation Power (TWh/y)        
Nuclear power 0 0 0 0 0 0 0 

Hydro power 130 130 130 130 130 130 130 

LNG 317 0 0 0 0 32 159 
PV 524 595 555 692 592 673 672 

Wind power 211 402 344 559 509 537 441 

Geothermal 12 12 12 12 12 12 12 
Geothermal (HDR) 0 0 100 0 200 100 0 

Biomass 31 22 31 29 31 30 30 
Total 1,225 1,160 1,172 1,422 1,465 1,514 1,443 

H2 generation (TWh/y) 51 67 9 106 24 43 29 

Battery output (TWh/y) 227 252 294 242 156 297 308 

Battery capacity (GWh) 801 821 983 809 643 920 1,013 

Gene. Cost  (Yen/kWh)* 11.7 14.3 11.1 16.5 12.1 12.9 11.7 

* 10 Yen/kWh = 80 €/MWh 

4. Conclusion 

In this paper, we evaluated the technologies required for a zero-carbon power system after 2050 using 

a multi-region power generation model that accounts for system stability. We estimated future power 

generation costs using the technology scenarios developed by LCS under the constraints of reduced CO2 

emissions. The following issues were clarified for the requirements to establish a zero-carbon power 

system. 

1) Large-scale introduction of renewable energy, in particular, developing a conversion efficiency of 

30% of solar power generation to reduce plant area.  

2) Installed capacity of storage batteries on a scale of 500 to 1000 GWh in order to alleviate short- 

and medium-term fluctuations and to integrate daily operations. 

3) Reinforcement of the capacity of electricity grid system by at least 10 times the current level in 

order to use renewable energy from Hokkaido and Kyushu. 

4) The inertial force constraint has the greatest influence on power generation cost.  Set the fraction 

of the electricity supply provided by inertial generators to 25%, which is half of the current 

situation. 

5) Reduction of power demand is effective. On the other hand, when the demand for electricity 

increases, the introduction of a stable power source of 100 to 200 TWh, such as HDR geothermal 

power generation is indispensable. 
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