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Abstract 

Recently, the installed capacity of wind power generators (WTGs) has significantly increased as an effort to reduce 

greenhouse gas emissions. The current technology for a WTG may utilize only 80% of theoretically maximum wind 

energy, and thus, related studies have been conducted to maximize its electricity production. If the price of a WTG 

becomes expensive due to advanced technologies, the improved profitability of a wind plant project is not a natural 

outcome from the increased energy yield. However, the economic analysis related to the increased wind energy 

capture has not been sufficiently addressed. Therefore, in this study, we perform the economic sensitivity analysis for 

the improvement in the energy capture of a WTG. Specifically, we examine the decrease in the levelized cost of 

energy (LCOE) due to the increased energy production; then, we analyze the acceptable increase in the capital cost of 

a WTG in the view of economic feasibility. The results show that both the reduction in LCOE and the acceptable 

increase in the capital cost are linearly proportional to the percent increase in the energy production of a WTG. 

Further, it is found that the economic effect is possibly the best for time-of-use (TOU) electricity pricing scheme.  
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1. Introduction 

Global warming due to greenhouse gas (GHG) emissions is a worldwide issue that threatens the 

survival of human being. As one of the measures against the problem, many studies on and applications 

of renewable energy sources (RESs) have recently been done in the electric sector. Among RESs except 

hydropower, wind power is the largest proportion of approximately 53%, of which the globally 

cumulative installed capacity has exponentially increased during the last 10 years from 93,924 MW in 

2007 to 539,123 MW in 2017 [1, 2]. The global wind power generation in 2017 was 1,123 TWh, about 

4.4% of total world electricity generation, although the installed capacity was about 7.5% [3]. 

Such discrepancy between the aspects of energy production and power capacity occurs mostly due to 

the variability and intermittency of wind. However, there is also a technology factor. According to Betz’s 

law, the theoretically maximum energy extracted from wind is approximately 59% of the wind kinetic 

energy [4]. In contrast, the current technology for a wind turbine generator (WTG) may utilize only 80% 

of the theoretically maximum energy [5]. Therefore, there is still room for technological improvement, 

and related studies have been conducted to maximize electricity production from wind power. 

The research on the maximization of wind energy capture has been done in two respects; one is the 

wind turbine itself and the other is the control strategy of the WTG. The previous studies on the wind 

turbine itself are as follows. In [6], blades are optimally designed to maximize the energy production, and 

accordingly minimize the cost of energy. In [7], a method to determine the geometric parameters of the 

blade is presented for the objective of maximizing the energy production. The airfoil of large wind turbine 

blades is optimally designed to achieve a large power coefficient in [8]. It is shown in [9] that the energy 
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production can be increased by maximizing the aerodynamic performance of a wind turbine blade.  In a 

different aspect, there are attempts to integrate the superconducting generator with low loss and high 

reliability, which lead to the increase in energy production [10, 11].  

Various control and operational schemes for WTGs have been presented to maximize the energy 

capture. An adaptive control algorithm for maximum power point tracking (MPPT) is proposed in [12]. A 

MPPT method using hill climbing searching without speed sensors is proposed in [13]. An efficient 

universal MPPT control without predetermined turbine characteristics and a nonlinear MPPT control 

based on feedback linearization are presented in [14] and [15], respectively. In [16], a robust output 

feedback controller is proposed to maximize the energy production in the presence of uncertainties in the 

parameters and dynamics of a wind turbine. In [17], the highest output power is achieved by determining 

the optimal angle of attack using computational fluid dynamic methodology. A nonlinear predictive 

controller asymptotic output tracking scheme is proposed in [18] to maximize the energy production. 

Since the construction of a wind plant, particularly an offshore wind plant, is a project with huge 

capital, such technological advancement should be meaningful if it leads to improving the economic 

feasibility of the project. Moreover, if the price of a WTG becomes expensive due to the advanced 

technologies, the improved profitability of the project is not a natural outcome from the increased energy 

yield. In that situation, the issue of economic feasibility assessment becomes more important. However, 

the economic analysis related to the increased wind energy capture has not been sufficiently addressed in 

the literature. Therefore, in this study, we perform the economic sensitivity analysis for the improvement 

in the energy capture of a WTG. Specifically, first, we examine how much the levelized cost of energy 

decreases due to the increase in energy production of a WTG; second, we analyze how much the captital 

cost of a WTG is allowed to increase in the view of economic feasibility. These analyses are performed 

using the sensitivity analysis function of HOMER software.  

The remainder of this paper is organized as follows. The modeling of a WTG and its economic 

charateristics are described in Section 2. The simulation parameters, such as wind speed and electricity 

prices, are also presented in Section 3. The simulation results and the associated economic analyses are 

presented in Section 3. Finally, concluding remarks are given in Section 4. 

2. Modeling and Simulation Setup 

2.1. Characteristics of WTG 

A generic 10 kW wind turbine model with the rated speed of 15 m/s, cut-in speed of 3 m/s, and cut-out 

speed of 24 m/s is selected. The power curve with respect to wind speed is given in Fig. 1. Its initial 

capital cost and operation and maintenance (O&M) cost are set to $20,000 and $200 per year, 

respectively, considering the data in [1]. The lifetime is 20 years. The capacity of converter system is 10 

kW, and its initial capital cost is set to $300. The efficiency and the lifetime of the converter are 95% and 

15 years, respectively. 

 

Fig. 1. Power output curve for the selected 10 kW wind turbine. 

The location is set at 35 degrees latitude and 126 degrees east longitude, which corresponds to West 
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Sea area of South Korea. The wind speed is composed for the location using the NASA surface 

meteorology and solar energy database [19] by scaling at the annual average of 5 m/s. The box plots and 

hourly profiles for annual wind speed and wind power output are shown in Fig. 2. The total energy 

production in this condition is calculated as 8,321 kWh per year except the loss due to the converter.  

        
(a)                                                                                                        (b) 

       
(c)                                                                                                        (d) 

Fig. 2. Monthly statistical data of (a) wind speed in m/s and (b) wind power output in kW, and hour profiles of (c) 
wind speed in m/s and (d) wind power output in kW. 

2.2. Economic parameters 

Three kinds of rate schemes for the electricity price are considered; uniform, time-of-use (TOU), and 

real-time pricing (RTP). The price values for TOU pricing and RTP are taken from Korean data of [20] 

and [21], respectively. The hourly prices of all the rate schemes are adjusted such that the average hourly 

price is equal to $0.1/kWh. The specific prices of the schemes are shown in Fig. 3. 

The economic analysis is based on the net present cost and levelized cost of energy (LCOE), which are 

calculated by the HOMER software. The related parameters are discount rate and project lifetime, which 

are set to 6% and 25 years, respectively.  

 
(a)                                                                                                      (b) 

Fig. 3. Electricity prices: (a) Uninform pricing (dotted) and TOU pricing (solid), and (b) Real-time pricing (RTP). 
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2.3. Simulation cases 

The improvement in the energy production of a WTG is modeled as the change of the power curve in 

Fig. 1. For example, a WTG which can generate 5% more electricity is composed by multiplying the base 

power curve in Fig. 1 by the value of 1.05. Thus, other characteristics of a WTG, such as rated speed and 

converter efficiency, are used unchanged.  

The base WTG and ten improved WTGs from 1% to 10% improvement in energy production are 

considered in the simulations. The annual average of wind speed and the average hourly electricity price 

are set to 5 m/s and $0.1/kWh, respectively. In the first simulations, the LCOE is calculated and compared 

for each WTG. In the second simulations, the sensitivity analyses are performed to examine the 

acceptable increase in the capital cost of WTG. Further, in the second simulation, two value of the annual 

average of wind speed, 4 m/s and 6 m/s, are additionally considered to investigate the effects of the worse 

and better weather condition, respectively. Three pricing schemes in Fig. 3 are separately applied in all 

the simulations. 

3. Results and Discussion 

3.1. Changes in LCOE 

The values of LCOE for all the simulation cases are listed in Table 1. The LCOE decreases by 

approximately the same value of $0.002/kWh as the energy production of WTG increases by 1% for all 

the pricing schemes. In other words, the reduced value of LCOE is linearly proportional to the percent 

increase in the energy production. The reason for the similar reduction in LCOE is that the increase in 

energy production is the same for each 1% improvement, which results in the same change in the revenue 

by selling the electricity. However, it should be noted that the reduction of LCOE does change for each 

1% improvement because the total energy production is placed in the denominator when the LCOE is 

calculated and it changes for each improved WTG case. If the reduction of LCOE is expressed as a ratio, 

it corresponds to the decrease by about 1.3%–1.4% every 1% increase in the energy production. 

It can be seen from Table 1 that the LCOE for TOU pricing scheme is lower than those of uniform 

pricing and RTP schemes. It happens because the electricity prices are higher at the time of more 

electricity generation of a WTG for the TOU pricing. This presumption can be quantitatively verified by 

computing the correlation coefficient between the electricity prices and the electricity generation of a 

WTG. The correlation coefficient is equal to zero for the uniform pricing according to its definition. The 

correlation coefficients for TOU pricing and RTP are 0.2174 and 0.1711, respectively. The correlation 

coefficient for TOU pricing is the largest. Consequently, the LCOE for the TOU pricing scheme becomes 

the lowest in this study. 

Table 1. LCOE of base WTG and improved WTGs. 

WTG LCOE ($/kWh) 

Pricing scheme Uniform TOU RTP 

Base WTG 0.154 0.142 0.150 

1%-improved 0.152 0.139 0.148 

2%-improved 0.149 0.137 0.145 

3%-improved 0.147 0.134 0.143 

4%-improved 0.145 0.132 0.140 

5%-improved 0.142 0.130 0.138 

6%-improved 0.140 0.127 0.136 

7%-improved 0.138 0.125 0.134 

8%-improved 0.136 0.123 0.131 

9%-improved 0.133 0.121 0.129 

10%-improved 0.131 0.119 0.127 
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3.2. Changes in GHG emissions 

The estimated GHG emissions, such as carbon dioxide (CO2), carbon monoxide (CO), sulfur dioxide 

(SO2), and nitrogen oxides (NOx), for all the simulation cases are listed in Table 2. The estimated GHG 

emissions are simulated with HOMER software assuming that the hourly wind generation is supplied 

with that from a 10kW diesel generator. Therefore, a value in Table 2 means that a WTG may reduce a 

corresponding GHG emission by that amount if it is used instead of the diesel generator.  

Table 2 shows the base WTG can reduce considerable amount of GHG emissions. In addition, 5% and 

10% improvement in energy capture of WTG may achieve the additional reduction in CO2 emission by 

0.88% and 1.74%, respectively. A corresponding reduction in other GHG emissions can also be achieved 

with the improved WTG. Although the absolute reduction of approximately 1% is not so remarkable, it is 

noteworthy that this environmental benefit can be achieved by improving only one property. Further, if 

the reduction in GHG emissions is translated into monetary value in an emission trading market, an 

additional decrease in the LCOE of WTG may be obtained. Therefore, it can be verified that the 

improvement in energy capture of WTG can make not only the positive environmental effects, but also 

the economic effect from decreased LCOE. 

Table 2. Possible reduction in GHG emissions with base WTG and improved WTGs. 

WTG GHG emissions (kg/yr) 

 CO2 CO SO2 NOx 

Base WTG 21,589 163 53.0 186 

1%-improved 21,627 164 53.1 186 

2%-improved 21,665 164 53.2 186 

3%-improved 21,704 164 53.3 187 

4%-improved 21,741 164 53.3 187 

5%-improved 21,779 165 53.4 187 

6%-improved 21,816 165 53.5 188 

7%-improved 21,854 165 53.6 188 

8%-improved 21,891 166 53.7 188 

9%-improved 21,928 166 53.8 189 

10%-improved 21,965 166 53.9 189 

 

3.3. Acceptable increase in WTG capital cost 

The acceptable increase in the capital cost of WTG can be found by comparing the LCOE of a new 

expensive WTG with that of the base WTG. For example, if the LCOE of an improved WTG with higher 

capital cost is greater than the LCOE of base WTG, the improved WTG is considered unacceptable from 

the economic point of view. This kind of economic analysis can be done using the sensitivity plot of the 

HOMER software. As a demonstration, the sensitivity plots of 5%-improved WTG and 10%-improved 

WTG in the base condition for the TOU pricing scheme are shown in Fig. 4, where the annual average of 

wind speed is 5 m/s. 

The area on the left side of the middle-inclined line means that the LCOE of the improved WTG is 

lower than that of the base WTG, and thus, the improved WTG is acceptable in the view of economic 

feasibility. The Homer software deals with the captital cost and the replacement cost after lifetime as 

different variables. Thus, two variables constitute the two axes in Fig. 4. However, there is no reason to 

make a difference between the capital and replacement cost except that the latter should be forecasted. 

Therefore, we will find the point where two costs are equal. Consequently, it can be derived from Fig. 4 

that the increase in the capital cost is acceptable by 2.56% for the 5%-improved WTG and by 5.03% for 

the 10%-improved WTG.  
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(a) 

 
(b) 

Fig. 4. Sensitivity plots: (a) 5%-improved WTG
 
and

 
(b) 10%-improved WTG.

 
The inclined line indicates

 
the 

boundary
 
for the economic acceptability of the improved WTG.

 

The procedures to find the point of acceptable increase in the capital cost are performed
 
for all the 

improved WTGs and pricing schemes, and the results are summarized in Fig. 5. As can be inferred from 

the results for LCOE, the acceptable increase in the capital cost is
 
also linearly proportional to the percent 

increase in the energy production of a WTG.
 
In addition, the acceptable increase

 
is largest for TOU 

pricing. The difference between the pricing schemes increases according to the percent increase in the 

energy production. This is because the correlation coefficient between the
 
electricity

 
prices

 
and the 

electricity generation of a WTG is maintained, and thus, the increased production translates into the 

increase difference between the pricing schemes.
 

It can be clearly seen from Fig. 5 that the higher wind speed not only increases the acceptable increase 

in the capital cost, but also enlarges its difference between the pricing schemes. Consequently, it can be 

suggested that the budget for the improved WTG should be justified
 
in relation to both the current pricing 

scheme and the weather condition. Further, if the expected degree of technical improvement
 
in terms of 

energy production not large
 
enough,

 
the acceptable increase in the capital cost of the advanced WTG will 

be marginal. Then, it needs to be seriously considered, at least from the economic point of view, whether 

to proceed with the research and development
 
(R&D)

 
of the technology.
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Fig. 5. Values of acceptable increase in the capital cost of a WTG for the combinations of the improvement in energy 
production, pricing scheme, and average wind speed. 

4. Conclusion 

In this paper, the economic analyses were performed for an improved WTG in terms of energy 

production. Various values of degree of technical improvement, pricing schemes, and average wind speed 

were considered. It was found that both the reduction in LCOE and the acceptable increase in the capital 

cost are linearly proportional to the percent increase in the energy production of a WTG. The correlation 

coefficient between the electricity prices and the electricity generation of a WTG happens to be the 

largest for TOU pricing, which results in the largest economic effect. Such difference between the pricing 

schemes needs to be investigated with different data sets. The weather condition was obviously a 

significant factor for determining the economic effect.  

The analyses in this study may be practically utilized when planning an R&D of a WTG technology 

with consideration for the budget constraint. In other words, some technology improvement in energy 

production may be rejected to proceed with if the technical improvement is marginal, such that the 

resulting increase in the capital cost is greater than the acceptable increase. Further research with other 

types of WTG and weather conditions is suggested. 

Conflict of Interest 

The authors declare no conflict of interest. 

Author Contributions 

Wonseok Yang and Chung Kyu Lee set up the simulation environment, performed the simulations, and 

drafted the manuscript; Young Gyu Jin designed the study, performed the analysis, and thoroughly 

revised the paper; all authors had approved the final version. 

336 International Journal of Smart Grid and Clean Energy, vol. 9 , no. 2, March 2020



 

Acknowledgements 

This research was supported by Korea Electric Power Corporation. (Grant number:R18XA03) 

References 

[1] REN21. Renewables 2017 Global Status Report. REN21 Secretariat, 2017. 

[2] Global Wind Energy Council, Global Wind Report-Annual Market Update 2017, GWEC, 2018. 

[3] Dudley B. Statistical Review of World Energy. BP, 2018. 

[4] Betz A. Introduction to the Theory of Flow Machines. Oxford: Permagon Press, 1966. 

[5] Yuan Y, Tang Y. On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines. Engineering, 

2017;3: 494–503. 

[6] Giguère P, Selig SM, Tangler JL. Blade Design Trade-Offs Using Low-Lift Airfoils for Stall-Regulated HAWTs. Journal of 

Solar Energy Engineering, 1999;121(4):217–223. 

[7] Lanzafame R, Messina M. Optimal wind turbine design to maximize energy production. Journal of Power and Energy, 

2009;223(2):93–101. 

[8] Zhu WJ, Shen WZ, Sørensen JN. Integrated airfoil and blade design method for large wind turbines. Renewable Energy,  

2014;70:172–183. 

[9] Capuzzi M, Pirrera A, Weaver PM. A novel adaptive blade concept for large-scale wind turbines. Part I: Aeroelastic behaviour. 

Energy,  2014;73:15–24. 

[10] Terao Y, Sekino M, Ohsaki H. Comparison of Conventional and Superconducting Generator Concepts for Offshore Wind 

Turbines. IEEE Transactions on Applied Superconductivity, 2013;23(3):5200904. 

[11] Qu R, Liu Y, Wang J. Review of Superconducting Generator Topologies for Direct-Drive Wind Turbines. IEEE Transactions 

on Applied Superconductivity, 2013;23(3): 5201108.  

[12] Hui J, Bakhshai A. A new adaptive control algorithm for maximum power point tracking for wind energy conversion systems. 

In: IEEE Power Electronics Specialists Conference, 2008:4003–4007. 

[13] Kazmi SMR, Goto H, Hai-Jiao G, Ichinokura O. A novel algorithm for fast and efficient speed-sensorless maximum power 

point tracking in wind energy conversion systems. IEEE Transactions on Industrial Electronics, 2011;58:29–36. 

[14] Narayana M, Putrus GA, Jovanovic M, Leung PS, McDonald S. Generic maximum power point tracking controller for small-

scale wind turbines. Renewable Energy, 2012;44:72–79. 

[15] Yang B, Jiang L, Wang L, Yao W, Wu QH. Nonlinear maximum power point tracking control and modal analysis of DFIG 

based wind turbine. International Journal of Electrical Power & Energy Systems, 2016;74:429–436. 

[16] Asl HJ, Yoon J. Power capture optimization of variable-speed wind turbines using an output feedback controller. Renewable 

Energy, 2016;86:517–525. 

[17] Thumthae C, Chitsomboon T. Optimal angle of attack for untwisted blade wind turbine. Renewable Energy, 2009;34:1279–

1284. 

[18] Bektache A, Boukhezzar B. Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization. 

International Journal of Electrical Power & Energy Systems, 2018;101:92–102. 

[19] NASA Prediction Of Worldwide Energy Resources (POWER) Data Sets. [Online]. Available: https://power.larc.nasa.gov/ 

[20] Korea Electric Power Company. Electric Rates Table. [Online]. Available: 

http://cyber.kepco.co.kr/ckepco/front/jsp/CY/E/E/CYEEHP00202.jsp 

[21] Korea Power Exchange. System Marginal Price (SMP). [Online]. Available: http://www.kpx.or.kr/www/contents.do?key=225 

 
Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons Attribution License (CC 

BY-NC-ND 4.0), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use 

is non-commercial and no modifications or adaptations are made. 

337.: Economic sensitivity analysis for the improvement in the energy capture of wind energy conversion system  W. Yang et al

https://power.larc.nasa.gov/
http://www.kpx.or.kr/www/contents.do?key=225
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



