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Abstract 

This approach aims to develop an algorithm for dealing with real time electricity price. The impact factor and 

different portfolio of cost function including fuel cost, load valve effects, carbon dioxide emissions and capacitor 

displacement are contained in the calculation. The derived theory is an initiative of green energy pricing mechanism 

in a power system. The Standard IEEE 30-bus test system and its network branch data are put into practice to verify 

the model concepts. Compound Simulated Annealing and MATPOWER algorithm (CSAM) is capable of solving AC 

and DC types of optimal power flow problems with multiple discrete and continuous variables. Marginal cost pricing 

and cost of marginal carbon emissions comprise the basic elements of electricity price. The uniform and locational 

electricity price is calculated in the test systems separately. The results show this model is a fast speed and accurate 

solution solvers of electricity price. Moreover, real time energy price with cost of carbon emissions makes users pay a 

little bit more for their electricity consumption. It is not only to have an attitude of seeking energy-saving, but even to 

achieve a basis structure of green energy pricing movement. 
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1. Introduction 

Recently, an increased concern upon environmental protection has become a main trend. Restrictions 

of carbon emissions of conventional power generation plant play an important role in this matter. This 

article is intended as building an algorithm for dealing with real time electricity price. The impact factor 

and carbon dioxide emissions are comprehended in the process of electricity price calculation. A green 

energy pricing mechanism is initiated from the model derived in this work. Fairer and more equal energy 

price is possible to impel the environment to become sustainable.  

Much literature has been carried on relevant studies. Evolutional programming algorithms have been 

applied to cope with dispatching electric power regarding economic and environmental courses [1]-[3]. 

Great deals of earlier work [4]–[17] have focused on LMP-related (locational marginal pricing) research 

results. About modeling of LMPs and its decomposed components has been performed in [4]–[12]. 

Sensitivity of LMP is discussed in [12]-[13]. Li [14] proposed a modification of LMP methodology. 

Forecasting of LMP considering load variation and uncertainty was presented in [15]-[16]. Chen [17] 

argued a methodology to directly link each concerned factors to the nodal prices.  

The model concept which details a mathematical formula in the pricing computations is the beginning. 

Problem formulation will follow to illustrate how to really implement the procedure and achieve the goals. 

Furthermore, some numerical results in case studies will be presented afterwards to prove the accuracy of 

the proposed model. The standard IEEE-30 bus test system and branch data are applied as electric system 

networks. Finally, the conclusion contains a brief conclusion and further investigations in the future.  

 

* Manuscript received June 10, 2018; revised April 29, 2019. 

Corresponding author. Tel.: +886-931820911; E-mail address: 1103404104@gm.kuas.edu.tw.. 

doi: 10.12720/sgce.8.4.478-487



2. Model Concept 

Concept of impact factors originates from some generators which have more influential effects in 

consequence of their cost function or specific location in the physic power network. The impact factors 

are designed for compensating generators or plants. The more critical role it may play, the more 

weighting it can get. With a view to finding the impact of one generator, the first equation refers to (1). 

,Gij Gi OPF Gij
P P P            (1) 

where, 

PGij: MW generated by generator i due to a demand change in bus j 

PGi,OPF: MW generated by generator i in an optimal power flow solution 

ΔPGij: difference of MW generated by generator i due to a demand change in bus j and an optimal 

power flow solution 

An index PGi,ind is able to express the importance of a specific generator which plays its part in the 

system. The index is evaluated by varying load demands in every load buses. 
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Each generator or plant has its own impact index. From (3), by a normalized arithmetic operation, τ i 

stands for the impact factor of generator i among the generators (from 1 to n) in the system. Therefore, it 

is easy to validate that 
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For all,  

PGi,ind: impact index of generator i 

i=1……n generators 

j=1……m demand load buses 

k=1……n generators 

Carbon dioxide emissions are regarded as main causes of global warming facts. There are many 

alternatives in price for carbon emissions [18]-[20]. One simple way is to charge polluters by piecewise 

payment [21]. In other words, more emissions will result in more penalties; however that has a maximum 

limitation to avoid overpaid and bad influence on economic activities. Fig.1 explains two policies in 

practicing the payment strategy. Table Ⅰ shows λ, which is the price rate in various carbon emissions in 

terms of different regulating policies. 

 

Fig.1. piecewise cost function of carbon emissions 
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Table 1. Price rate of carbon emissions in various real power generations 
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The rule of marginal cost pricing is certificated to evaluate electricity price in the market of natural 

monopolies. Whereas the price is equal to marginal cost, it possibly brings about an effective allocation of 

resources. With respect to electricity, the proposed marginal cost pricing MCP is referred to (5). 

Carbon dioxide emissions have gradually caused concerns relevant to global warming. Electricity 

consumed and production is a crucial issue whereas considering eliminating carbon emissions. To define 

the cost of carbon emissions and include it in electricity price is a way to reduce power consumption. For 

all power generation plants in the same network, variations in any load bus lead to changes of generator 

output. From the view of optimal power solution, the least cost of generator and minimum loss in power 

line is the target for commitment. Equation (6), introducing impact factors to relocate cost of carbon 

emissions, is an opportunity to make electricity price reasonably get revised and compensated. Ei is 

reckoned as total carbon emissions of distinctive generation techniques. For instance, coal-fired and oil-

fired turbines emit different amounts of carbon emissions. The useful unit for this parameter is metric ton. 

Equation (7) specifies marginal carbon emissions cost (MCEC), which is equal to total carbon emissions 

divided by total load demand. 
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There are two types of energy pricing mechanism in this model, uniform and locational energy price 

(Ep). Uniform Ep (Ep,uniform) is appropriate for only one power distribution company and provides the 

same electricity price for all customers in the same electric network. Refer to (8), a fixed or complicated 

profit rate could multiply total marginal cost to obtain final electricity price. 
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The other pricing mechanism is locational energy price (Ep,locational). Electricity price changes in 

accordance with different load demand and network condition. Marginal cost pricing in power nodes is 

calculated in advance. Equation (9)-(13) follows the identical procedures of uniform energy price 

calculation in (5)-(8) to evaluate locational energy price in different load buses. 
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For all 

MCPi: marginal cost price of generator i 

FCi: cost function of generator i 

PGi: power output of generator i 

PGij,NET: relocated power output of generator i for load bus j 

PLj: demand load of bus j 

PTloss: total loss in an optimal power flow solution 

PTCC,i():price of carbon emissions of generator i 

LMPj: locational marginal price of node j 

Pr: profit rate of generation plant 

PG,,Total: total generation amount 

Ei(): carbon emissions of generator i 

3. Problem Formulation 

Simulated Annealing algorithm is a probabilistic method proposed by Kirkpatric, Gelatt and Vecchi 

[22] for finding the global minimum solution of a cost function which possesses several local minima. It 

emulates the metal treatment where a solid finally reaches its frozen structure with minimum energy 

configuration [23].  

MATPOWER is a Matlab-based power system simulation package which is able to supply high-level 

sets of power flow and optimal power flow solutions [24]. Compound Simulated Annealing and 

MATPOWER algorithm (CSAM) is able to solve AC and DC types of optimal power flow problems with 

multiple variables, not matter what the formulation and combinatorial functions are. 

The following standard form of optimization problems is applied. 

( , )Min f x u           (14) 

Subjects to 

( ) 0g x            (15) 
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( ) 0h x            (16) 

min max
x x x            (17) 

 

f(x,u) in (14) equals to a summation of fuel cost and cost of load valve effects, capacitor bank and 

carbon emissions. Equality constraints, g(x) in (15), are nonlinear power balance equations, and h(x) is 

consisted of branch flow limits and bus voltage angles and magnitudes. The variables x which include bus 

angles, upper and lower limits of all buses and limits of real and reactive power injections to form 

inequality constraints. An equation in (18) is formulated to represent the overall cost function. 
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Detailed descriptions are as follows: 

3.1 Fuel cost- The fuel consumption which plays a major part of cost function in thermal power plants 

can be modeled by a quadratic form as follows: 

2( )i
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3.2 Load valve effects- Control valves are possible to induce ripple effects in the input/output curve [25]. 

This term is able to describe as 

,
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3.3 Capacitor bank cost- The cost of capacitors could be calculated based on its capital investment. 

Lifespan of facility is defined as n, and r is interest rate in the market. Ignoring maintenance cost, Net 

Present Value is applied to this evaluation. 
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3.4 Carbon emissions- It becomes a critical part in the modern environment issues. NOx emission might 

be a quadratic form of power generations. A certain portion of total emissions could be regarded as 

the amount of carbon emissions for simplification. 

2( ) ( )
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3.5 Tap changer settings of transformers modulate bus voltage magnitudes. 

 

Integrating above items, a vector u as shown in (23) represents control variables existed in the 

objective function [26]. All the units of subordinate cost functions are simultaneously adjusted to USD$/h. 

{ ...... , ...... , }
Gi Gn j m ij

u P P Q Q t         (23) 

The procedure for implementing the model algorithm is illustrated in Fig.2. The operational flow is 

started from deciding load demand. The MATPOWER is an AC OPF solver to get basic index data of 

individual impact factors. Afterwards, By the CSAM algorithm, uniform and locational electricity prices 

are calculated respectively in the status of acquired near optimal solution to end the procedure. 
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Fig. 2. the implementation procedure of the model algorithm 

4. Case Study 

There are three different cases of the IEEE-30 bus system for test example. Referring to Table 1, λ1, λ2 

and λmax representing prices of carbon emissions are set to 3, 4 and 5 ($USD/t). EC1, EC2 and Emax are 

equivalent to 10, 30 and 70(MW). 

This test system includes 6 generators distributed at bus 1, 2, 13, 22, 23 and 27. For case 1, the cost 

function includes fuel, load valve effects and carbon emissions only. The MATPOWER AC OPF is 

appropriate for the calculation. In case 2, it is possible to compare results of case 1 and the proposed 

CSAM method. In case 3, all the variables involving transformer’s tap changers and capacitor 

arrangements are put into practice to show the performance of the CSAM algorithm. The load demands 

are set at 20 buses. 

TableⅡdemonstrates the solution of case1. Whereas taking into account of uniform energy price, 

MCP is 3.822 and MCCE is 0.985 for policy 1, and is 0.528 for policy 2. Considering a simplified profit 

rate, a fixed rate of 10%, the electricity price (EP) is 5.288 and 4.785 $USD/MWh respectively. 

Table III shows the outcome of the proposed CSAM algorithm. In view of the same load condition, 

total cost is 778.533 and 737.34 respectively, which is definitely lower than the result of case 1. MCP is 

3.909 and 3.920. MCCE is 0.980 for policy 1, and is 0.524 for policy 2. With regard to the same profit 

rate, the electricity price (EP) is 5.378 and 4.888 $USD/MWh respectively. It is worth to note that policy 

2 of carbon cost causes users to pay less electricity price because of adopting ramp rate in place of fixed 

number. Fig.3 also illustrates the solution finding process. In the initial states, it is possible to jump to 

higher cost and then gradually reduce to stable status. That is a specific benefit of stochastic programming 

algorithms applied in the optimal solution solver. 

Table IV and V illustrate the solution of the other iteration. In view of locational energy price 

mechanism, MCPj and MCCEj are determined. Transformer tap changers and capacitor displacement are 

contemplated as well whereas the capacitor bank is based on 300kVar, and the tap changers are limited in 

0.95 to 1.05. Different generation commitments combined with capacitor settlements and tap changer 
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adjustments can lead to another optimal solution and find their locational energy prices in spite of 

complicated cost function portfolio. 

 

 

Fig.3. Solution of the CSAM algorithm 

Table 2. Uniform pricing mechanism by the MATPOWER AC OPF 

 Symbol 
Generator (Supply) Demand 

(total) 

  Gen1  Gen2 Gen22 Gen27 Gen23 Gen13 

192.2 

Impact factor τi 0.167 0.194 0.6 0.226 0.185 0.169 

MCP($USD/MWh) MCP 
Policy1 3.822 

Policy2 3.822 

MCEC ($USD/MWh) MCEC 
Policy1 0.985 

Policy2 0.528 

EP,uniform ($USD/MWh) EP,uniform 
Policy1 5.288 

 
Policy2 4.785 

Generation(MWh) PGi 
40.83 54.54 23.11 40.47 19.08 17.18 

 Total loss(MWh) PTloss 
3.001 

Total Cost ($USD/MWh) f(x,u) 
Policy1 836.015 

Policy2 784.521 

Table 3. Uniform pricing mechanism by the CSAM algorithm 

 Symbol 
Generator (Supply) Demand 

(total) 

  Gen1  Gen2 Gen22 Gen27 Gen23 Gen13 

192.2 

Impact factor τi 0.167 0.194 0.6 0.226 0.185 0.169 

MCP($USD/MWh) MCP 
Policy1 3.909 

Policy2 3.920 

MCEC ($USD/MWh) MCEC 
Policy1 0.980 

Policy2 0.524 

EP,uniform ($USD/MWh) EP,uniform 

Policy1 5.378 

Policy2 4.888 

Generation(MWh) PGi 
Policy1 31.37 44.84 29.69 28.48 26.84 33.43 

Policy2 30.95 60.24 29.11 20.97 26.43 27.11 

Total loss(MWh) PTloss 
Policy1 2.443 

Policy2 2.610 

Total Cost ($USD/MWh) 
f(x,u) 

Policy1 778.533 

Policy2 737.34 
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Table 4. Locational pricing mechanism by the CSAM algorithm 

 Symbol 
Generator (Supply) Demand 

(total) 

  Gen1  Gen2 Gen22 Gen27 Gen23 Gen13 

192.2 

Impact factor τi 0.167 0.194 0.6 0.226 0.185 0.169 

Generation(MWh) PGi 43.49 53.89 22.26 21.25 27.06 27.01 

Total loss(MWh) PTloss 2.629 

Total Cost ($USD/MWh) f(x,u) 737.559 

Bus,j Pdj(MW) LMPj 

(Policy 1) 

LMPj 

(Policy 2) 

Bus Pdj(MW) LMPj 

(Policy 1) 

LMPj 

(Policy 2) 

2 21.7 7.502 6.579 17 9.0 5.392 5.011 

3 2.4 4.295 4.196 18 3.2 4.428 4.295 

4 7.6 5.159 4.838 19 9.5 60804 5.073 

7 22.8 7.685 6.615 20 3.2 4.428 4.295 

8 30.0 8.882 7.604 21 17.5 6.804 6.060 

10 5.8 4.860 4.616 23 3.2 4.428 4.295 

12 11.2 5.758 5.282 24 8.7 5.342 4.974 

14 6.2 4.927 4.666 26 5.5 4.810 4.579 

15 8.2 5.259 4.912 29 2.4 4.295 4.196 

16 3.5 4.478 4.332 30 10.6 5.658 5.201 

Table 5. Optimal setting of Qj and tij in the IEEE-30 bus system 

Bus Qj (MVar) Branch Tap changers setting 

3 0.72 4-12 0.95 

4 1.5 6-9 1.02 

5 0.33 6-10 0.96 

6 0.24 27-28 1.01 

7 0.36   

8 0   

9 1.5   

10 0.09   

11 1.08   

12 1.2   

14 1.38   

15 0.48   

16 0   

17 0.27   

18 0.96   

19 1.29   

20 0.54   

21 1.02   

24 1.08   

25 1.47   

26 0.15   

28 0.3   

29 1.29   

30 0.66   
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5. Conclusion 

It may be stated from above work that acceptable results have been acquired by the proposed model 

and flow chart. The basic content of electricity price consists of marginal cost pricing and cost of 

marginal carbon emissions. The uniform and location electricity price are calculated in the test system 

respectively. The impact factors are contributed to fairly relocate cost of generation and carbon emissions 

as well. The test results show that the CSAM algorithm carries out a fast speed and accurate solution 

solver of electricity price based lower total cost. Furthermore, real time energy price with cost of carbon 

emissions makes the sustainable environment viable. It is not only to have an attitude of looking for 

energy-saving, but also to obtain a basis framework of green energy pricing mechanism. The bus with 

more load demands, users will have to pay more prices to respond their request. It is possible for end 

users to think energy saving issues or locating distribution resources in the local communities.  

There will be some critical surveys in the future. For example, a complicated generation cost function, 

embedded renewable energy source at distribution network, zonal energy price with pollution emissions. 

A predict of renewable energy and energy price integrated probabilistic demand forecasting is drawing 

our attentions toward it as well. Alternative stochastic programming algorithms applied in the optimal 

solution solver are also crucial issues for us to put effort on them.  
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