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Abstract 

This paper proposes a novel control strategy for power conditioning unit (PCU) to enhance power quality during fault 

ride through (FRT) operation. During unsymmetrical fault condition, PCU injects sinusoidal currents by adopting 

control method suggested. By using effective current limitation technique suggested here, injected currents can be 

limited to their rated value during a fault. To avoid triggering of overcurrent protection, FRT operation is ensured. In 

case of failure of dc-dc unit to handle the maximum PV power, a non-maximum power point tracking (Non-MPPT) 

operation mode is proposed to get it operated under severe fault condition. 
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1. Introduction  

Due to latest achievements in renewable energy technologies, FRT capability plays an important role, 

for grid interconnection. FRT research on photovoltaic (PV) power conditioning unit is lagging behind 

wind power generation [1]-[4]. FRT capability of PV system not only influences grid stability, but also 

restores the healthiness of grid. Hence it is a challenge for grid interconnection of PV system, which 

affects PV power generation utilization. Different techniques have been studied [5]-[7], analysed for 

enhancing FRT capability of PV systems.  

A single phase grid connected PV system for FRT capability was illustrated [8], for controlling both 

active and reactive powers [9]. FRT brings grid connection benefits and it also solves difficulties in 

design of PCUs. At the moment of grid fault, overvoltage and overcurrent conditions are occurred [10]-

[13]. A curve between % voltage sag and operation time is as shown in Fig.1 w.r.t. E.ON code for FRT, 

used in various studies of FRT capability [14]-[20]. Area above red curve illustrates that PV system 

remain grid connected. Shaded area below red curve demonstrates that, PV system will be tripped for 

safety purposes. 

As an example, PCU must remain grid connected for 1.5 seconds for 90% voltage sag. PV system has 

capacity that should give a linearly proportional active/reactive current output for the period of 90% to 

50% voltage sag, according to E.ON code. At 50% line voltage drop, distributed generator should output 

100% reactive current.  Fig.2 illustrates need to support PV network during grid fault [21]-[22]. 
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Fig. 1   % Voltage sag Vs operation time curve. 

 

 
Fig. 2 Necessity to support voltage of PV network at the moment of grid fault. 

     

This paper suggests decrease in dc link ripples during unsymmetrical faults with dc-dc converter 

control. The impacts of PV arrays on whole network are significantly examined and proposed a control 

strategy for PCU during FRT [23]-[28]. In addition, it also proposes (i) control method to take out double 

grid frequency oscillations from injected real power and dc link voltage; (ii) Non-MPPT operation mode 

for dc-dc converter during fault, when converter unable to handle maximum PV power; (iii) current 

limitation technique to limit injected currents to their rated values. 

    The paper is organized as: Section II explains the proposed control strategy which includes two stage 

three phase grid connected PCU operation, current limitation technique and control diagrams with 

flowchart. Simulation results are discussed in section III. Section IV concludes the paper. 

2.  Proposed Control Strategy for Power Conditioning Unit 

Let us discuss about a novel control strategy for PCU unit in order to enhance power quality during 

FRT. A two stage three phase grid connected PCU is considered for studies. 

2.1 Grid connected PCU 

A two stage three phase grid connected PCU is demonstrated in Fig. 3, containing boost converter and 

PCU interconnected through dc link capacitor. There is no negative sequence (NS) in voltages and 

currents at the moment of fault during the balanced voltage sag. In a general case, all real power produced 

by PV panels is conveyed to dc link. This active power from PCU injected into grid. The active power 

supplied by PCU is not as much as power injected to dc link. That increases the dc link voltage. Injected 

active power has double grid frequency oscillations. These oscillations of dc link voltage have a negative 

effect on life cycle of capacitive dc link. In next section, a novel control technique to decrease such 

oscillations is suggested.  
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Fig.3 Grid connected PCU. 

2.2 Current limitation technique 

An effective current limitation technique is suggested to control overcurrent failure. When voltage sag 

takes place, rated power of converter must be refreshed. This is called as new nominal power (NNP). At 

the moment of voltage sag fault condition, value of NNP is not equal to nominal power of converter 

which depends on depth of voltage sag. Hence NNP can be calculated as  
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Vb is grid voltage in natural reference frame. By knowing NNP and reactive power Q, maximum active 

power (Pmax) for PCU to inject to grid far away from overcurrent can be calculated as: 
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For the converter operation under deep voltage sags, NNP will be low, as 
p nV - V  becomes small. 

Therefore, during deep voltage sag, we can write condition: 

                                              
max( ) ,  0if Q NNP Q NNP and P     

     In case NNP is less than reactive power reference, converter cannot inject reactive power to grid.  

When voltage sag is observed, NNP and Q can be calculated with the help of equations (1) and (2). 

Active power (Pmax) is controlled with the help of equation (4). During voltage sag faults, dc link 

controller continuously compares Pmax and active power reference (P
*
). At Pmax > P

*
, active power the 

converter injected earlier can still be supplied. 

     Then again, if Pmax< P
*
, PCU cannot inject P

*
 computed by dc link controller. In order to keep dc link 

voltage steady, PV exhibits to separate maximum power from PV array. This mode is called Non-MPPT 

operation mode. It is in operation when fault takes place and Pmax< P
*
. Fig. 4 explains how dc-dc 
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converter is regulated in Non-MPPT mode. Right hand side (RHS) of Fig. 4 is selected for Non-MPPT 

mode, as slope is higher; working point can move quicker than left side. To move to right side, duty cycle 

is decreased with the help of equation (6). 
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Where Vdc is dc link voltage and VPV is PV voltage. When fault occurs, Non-MPPT mode comes into 

operation and duty cycle calculation is made by using equation (7). 
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Where Dc is approximate value of duty cycle. DMPP and PMPP are duty cycle and PV power respectively at 

MPP. 

 
Fig. 4 P-V Characteristics of PV Array. 

2.3 Control Diagram with Flowchart 

The proposed control diagram is as shown in Fig.5, which comprises of two stages, dc-dc converter 

and PCU. PI controller is controls dc voltage. The output of PI controller decides active power reference 

to set dc link voltage. Two Proportional-Resonant (PR) controllers control injected currents separately. 

DC-DC converter works as MPPT. DC-DC converter shifts to Non-MPPT mode during fault in grid and 

PCU cannot handle maximum power of PV. Fig. 6 shows flowchart for proposed control technique. In 

case Vpu falls beneath 0.9 for every unit, voltage sag detection block will produce fault signal which is 

then used to activate NNP, Q, and Pmax blocks. For examination amongst Pmax and P
*
, an error signal is 

produced. 

 

                           
 

                                       Fig.5 Control diagram.                                                                               Fig. 6 Flowchart. 
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    DC-DC converter control is as shown in Fig. 7. Red dashed line represents calculation for Non-MPPT 

control, which is activated when Enable Signal is equivalent to 1. 
c

D  can be calculated with the help of 

equation (7). In AND block of Fig. 7, if signals of comparator and fault are equivalent to 1, dc-dc 

converter changes to Non-MPPT mode. For Non-MPPT operation, PI controller will have to tune to a 

new duty cycle. PCU operation under various grid conditions is covered in Table 1. MPPT keeps working 

under severe condition when fault takes place in network and Pmax < P
*
. It shows that PCU has ability to 

inject Pmax of PV array and additionally required reactive power. For this situation, fault signal is 1, while 

comparator signal is zero.   

                                                              
Table 1. Operation of PCU during Various Grid Conditions 
 

 
 

 

 
 

 

 
 

 

 

 
 

Fig. 7 DC-DC converter control diagram. 

3. Simulation Results 

To study proposed strategy, a proposed model is developed in Matlab/Simulink. DC link voltage is 

assumed to be 500 V. A case is studied, in which double line-ground fault is occurred in phase B and C 

and ground at t = 0.2 sec. Three phase grid voltages are shown in Fig. 8 (a). When unsymmetrical fault 

happens, FRT operation is empowered. Fig. 8(b) shows injected currents during fault, which are 

controlled by utilizing control technique. As voltage sag is not within the prescribed limits of definition 

inconformity with IEEE 1159 standard, there is increment in currents in Phase B and Phase C. Injected 

currents are sinusoidal. PV voltage is as appeared in Fig. 8(c). Fig. 9(a) shows injected active and reactive 

powers, at the moment of fault. When unbalanced voltage sag observes, active power suddenly falls to 

prevent failure in overcurrent. Injected reactive power increases once fault signal is equal to 1 and 

oscillates with frequency, as explained in proposed method and shown in Fig. 9(a). Fig. 9(b) shows dc 

link voltage, decreased at the moment of fault. Modulation index is shown in Fig. 9(c). Fig. 9(b) 

demonstrates that dc link voltage is settled appropriately. 

Grid Condition FRT DC-DC Converter 

Operation 

 >0.9
pu

V  Disabled MPPT 

0.9
pu

V   Pmax > P*   Enabled MPPT 

Pmax < P*   Enabled Non-MPPT 
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       (a)                                                                               (b) 

 
                                                                 (c)                                                                                                                                                                                                

Fig. 8  PV system simulation results for: (a) three phase grid voltages,(b) three phase currents,(c) PV voltage, at the moment of 

unsymmetrical fault. 
 

                                                                                                          ---  Reactive power                                                              
                                                                  ---  Active power                

        

(a)                                                                                                               (b) 

  
      (c) 

Fig. 9  PV system simulation results for: a) active and reactive powers (b) dc link voltage at the moment of 

unsymmetrical fault  (c) modulation index. 
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4. Conclusion 

A novel control strategy for PCU to enhance power quality during FRT is proposed in this paper.  

Control strategy suggested here explains two operation modes, MPPT and Non-MPPT mode; both can 

work in severe fault conditions. One of significant contribution of this paper is Non-MPPT operation 

mode for dc-dc converter. This operation mode is examined in this paper. 
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