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Abstract 

The futuristic smart grid require creative architectures for Information and Communication technologies (ICT) 

networks. One such architecture must need some sort of topological control for the next generation grid. To assess 

architectural impact and effectiveness, simulation models are important. Communication networks are expected to be 

tightly coupled-integrated element for smart grid systems. The co-existence of communication and control and their 

joint operation necessitate accurate modeling of communication events. While at the first glance, it is tempting to 

model the communication network as a black box that introduces delay/s between its input and output, the complex 

interactions among grid network and its components and between data sources and the network make it less tractable. 

The paper focuses a software-based smart grid architecture modeling using an OMNET++, a discrete event simulator. 

It consists of layers of independent management modules for communication, and control events that represent real-

world cases using generators, circuit breakers, switches or relays, transmission lines and loads. A topology sorting 

algorithm is presented using modified Dijkstra‟s Algorithm, and several contingency scenarios for an IEEE 14 bus 

system was carried out emulating real electric test-bed conditions. 
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1. Introduction 

Discrete-event simulation is a trusted platform for modeling and simulating a variety of systems. 

OMNeT++ [1] is a public open source, component-based and discrete event simulation environment and 

is becoming a very popular simulation platform especially in sensor networks, communication and 

networking community. Its primary application area covers the simulation of communication networks, 

IT systems, queuing networks and business processes as well. The authors in [2] has shown that 

OMNeT++ is very suitable for simulating wireless sensor networks owing to its modular structure and 

using NED language for ease of simulation configuration. This paper will focus on smart grid networks 

and environment. The model described in the paper is a real-world smart grid, and therefore takes on 

many assumptions and simplifications. Only real power is considered for simplicity for modeling. These 

assumptions aside, the model attempts to establish a clear set of commination principles between 

generators and loads in order to make smart, priority based decisions to reduce costs and down times. We 

believe that the grid framework presented would serve as a point of reference for futuristic distributed 

decision models. 

1.1 Smart grid module creation using OMNET++  

A project in OMNET++ requires a NED and INI configuration file [1]. Any behaviors associated with 

a module in the NED file must be defined in a corresponding C++ class. The layout and topology of all of 
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the network configurations were established using the NED language unique to the OMNET++ 

simulation environment. The NED language is also used as a base for defining the modules within each 

network and the connections between each module. Networks are created using the „network‟ type of the 

NED language and are populated with unique modules. The NED language allows for the creation of 

networks consisting of any number of unique modules with any number of interconnections. The NED 

language also encompasses the initial display state of the network and all modules/connections.  

The modules within grid network can contain modules of their own (compound module) therefore 

becoming, in a sense, sub-networks within the over-arching network. Each module is defined in the .ned 

files (NED language file type) as having a discrete number of gates through which it can connect to other 

modules as well as parameters that can take on a variety of different types (int, double, bool, etc.). These 

modules can that be given specific behaviors by associating them with a C++ class. Gates and module 

parameters can be extracted from the .ned files associated with the modules within the C++ classes. 

Along with the ability to create modules within networks and compound modules, the NED language also 

supports the ability to make custom connection types to link the in/out/inout gates of each module. These 

connection types exhibit many characteristics similar to modules within the .ned file such as the ability to 

define parameters and give specific behaviors via a C++ class. By defining custom (or using built in) 

connection types it is possible to implement any number of connection behaviors (delay, data-rate, data-

loss, or open/closed connection). Many functions and code segments within the C++ associated with 

each .ned file are drawn from the inclusion of the omnetpp.h library. Some of these functions will be 

explained within the paper, within reason. All parameters of the NED files can be manipulated in the 

associated INI configuration file without affecting the base code. This allows for multiple different 

scenarios to be set up and also allows for parameters to be changed on the fly to evaluate the effect on any 

given network. The authors in [3] is a flexible smart grid co-simulation framework. It allows to combine 

several simulators for different requirements.Using mosaik, it is possible to combine simulators for 

photovoltaic, power plants, households etc. to a complex smart grid simulation scenario. However, 

mosaik assumes a perfect link for the communication between the individual entities like houses, power 

plants and electric vehicles. The authors in [4] simulate the influence of cyber-attacks on a Smart Grid 

using Matlab/Simulink in combination with OPNET. In [5], OMNeT++ and OpenDSS(electric power 

Distribution System Simulator) are combined and OMNeT++ takes control of OpenDSS. In [6], 

OMNeT++ and OpenDSS are run in parallel and the events are synchronized at certain time slots. Both 

solutions are limited to OpenDSS for the grid simulation and not easily extendible for additional 

simulators.In [7], the authors use OMNeT++ to analyze measurements from a real testbed to evaluate the 

communication effort caused by using electric vehicles for stabilizing the power grid.This shows a good 

example of the flexibility of OMNeT++ regarding combination with other information sources. 

2. Modeling IEEE 14 Bus Grid Configuration 

The grid configuration referenced throughout this paper is an IEEE 14 bus system Fig. 1. The topology 

is captured and hard coded as seen in the NED file associated with this configuration below. Each node in 

the 14 bus network is referred as Process Bus (PB). There are 14 PB‟s. The length of transmission line 

(TLines) also included in the model. 

Within the IEEE configuration network, 14 Process-Bus (PB) submodules are defined along with a 

single Control Module. The PB modules represent decision making busses within the 14 bus system. The 

control module can exhibit control over the PB‟s and their connections (TLines) however, if it becomes 

compromised the network will revert to a predefined, independent PB state. These modules will be further 

elaborated on in their specific sections of the paper. All line connections exhibit both length and status 

(disabled/not disabled).This network configuration ran in the Tkenv GUI is displayed in Fig. 2. PB‟s 

containing generators in the IEEE 14 Bus OMNET++ system are represented in green while loads only 

are represented in black. Due to the simplicity of the model, synchronous condensers are represented as 

Loads. The same components used to realize this IEEE 14 Bus model, can be used for many diverse 

topologies. 
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Fig. 1. IEEE 14 Bus .ned file. 

 
 

Fig. 2. OMNETT model of 14 bus network. 

   

The Process-Bus (PB) Fig. 3 is the complex module used to represent smart, decision making busses 

within this grid model. The PB complex-module has no C++ class associated with it. The simple 

modules that compose the PB module are MessageHub, LoadProcessing, GenProcessing, Facilities, and 

Generator. A brief description of each simple module‟s purpose within the PB: 

 The Generator module represents a single generator within each PB.  

 The Facilities module represents a Load within the each PB 

 The GenProcessing and LoadProcessing modules take in requests or offers from each Facility or 

Generator module and then make decisions about which Gens/Loads to service/choose.   

 The MessageHub module is the avenue for external communication with other PBs in the grid. All 

offers and requests pass through the MessageHub before being sent to other PBs.Each simple module 

2.1 The Process-Bus
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that composes the behavior of the PB are covered in detail in their specific sections of the report. 

The submodules in each PB are connected with standard connections (not TLines). This is due to the 

fact that the localized geographical position as well as abundant interconnections would make TLines 

failures/delays much less substantia.  

 

Fig. 3. PB .ned file. 

.  

Fig. 4. Showing a process bus with two generator modules and three demand modules in the Tkenv GUI. 

The .ned file associated with the PB complex module is depicted in Fig. 3 above. The parameters of 

the PB define the following attributes: 

 int numFacil, numGen – Number of Facilities & Generator modules within the PB 
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 string color – Defines the color of the PB 

 int xpos, ypos – Defines the x & y position of the PB within the Tkenv GUI 

The four sub-modules within the PB (discussed previously) are declared under „submodules‟. This 

indicates that the Facilities and Generators are both vector submodules of size numFacility and numGen 

respectively. There is logic within the declaration of both LoadProcessing and GenProcessing to either 

include or exclude them from the PB (e.g. if the number of facility modules = 0, then there is no need to 

have a LoadProcessing submodule). The interconnections of each submodule are defined in „connections:‟ 

and utilize the gate names already defined in the .ned files associated with each of the four simple module 

types. These connections are regulated by logic that prevents connection attempts to modules that do not 

exist in any particular PB. 

2.1.1. Modeling facilities (demand) branches of Process Bus  

The Facilities module only appears within PBs and never exists as an independent entity. Each PB can 

have any number of Facilities greater than or equal to zero. A single facility module may be used to 

represent the total load within a given PB or multiple facilities can be utilized to distinguish between load 

types (residential, medical, commercial, etc.). The .ned file for facilities serves to establish parameters 

and gates for the module. These parameters are similar to the variables defined in the C++ class described 

in next section. The .ned file and C++ code is not shown in this paper. 

An important feature of the Facilities module is the priority parameter. The facility Priority is a way to 

layer the priority levels associated with distance, topological, relative priority sorting features. This is 

necessary because, for example, a facility with larger demand should always have a higher priority than 

other low level request. All priority levels used throughout the model are characterized by a higher 

priority equals to a lower number (e.g. priority 0 > priority 1). 

2.1.2. Load Processing module 

The Load Processing module is a significant decision maker of the PB. It has the ability to make 

decisions about which PB‟s to send offers to and which generator offers to accept. The decision making 

and tracking of Facility requests by the Load Processing module‟s C++ behavioral code is accomplished 

by working closely with an instance of the LoadJobs class which is owned by the LProcessing class. This 

LoadJobs object stores all information about a given Job, including which Generators are servicing it and 

Generator offers. A Job is defined as a power request from a given Facility. The .ned file & actual C++ 

code for the LProcessing module is not discussed in this paper. 

 

Fig. 5. Load Processing and flow diagram. 
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Fig. 5 shown below is a block diagram that indicate how demands are processed by load processing 

engine. In other words, it is a flow diagram for the requests, forwarding, and decision making capabilities 

of the Facilities-LProcessing-LoadJobs link within each PB. One of the most important characteristics of 

the load interactions is that while there are Jobs in the Job Lists, the LProcessing Module is constantly 

monitoring itself. Every time a monitoring cycle occurs, the LProcessing works with LoadJobs class to 

identify any jobs that still need power, send new requests (every other cycle), and send final 

requests.Decision making about offers occur as they are received. 

2.1.3. Tracking Load Jobs in LProcessing module 

The LoadJobs class instances are objects owned by the LProcessing module to assist with Job data 

keeping and decision making. The actual C++ code for LoadJobs will not be shown in this paper. 

3. Generator Processing Functions and Module 

Each PB can have any number of Generator modules greater than or equal to zero. One generator can 

be used for the entire power supply of any PB, or multiple can be used to represent different types or 

locations. Each generator is given a maximum amount of power that it is capable of supplying, a base cost 

per power unit, and an environmental priority. These attributes are included in any power offer. The 

generators are capable of distributing their power supply among any number of different Jobs associated 

with different facilities, as long as total power distributed remains less than max power. The .ned file & 

actual C++ code for the Generator module will not be shown in this paper 

The Generator module is much less passive than the Facilities module as it owns both the Jobs and 

Queue object as well as checking itself every cycle and relaying required amounts of power for each Job.  

The Gen Processing module serves as the power Generation for PB. It assists each generator in 

determining which jobs should be selected for servicing and which jobs should be placed in the queues as 

well as being the point of origin for all generator offers. The .ned file & actual C++ code for the 

GProcessing module will not be shown in this report,  

3.1  JobsList and Queue Processing 

In both the Generator and GProcessing sections of this paper, JobsList and Queue have been referred 

to by their pointer names GJobs and GQueue respectively. The nature of the JobsList and Queue classes 

are similar, they will be discussed in parallel. The JobsList class stores information about the Jobs that a 

Generator is servicing while the Queue class stores the Jobs that are in the queue. Both are objects owned 

by each Generator module. 

It is possible for a job to be in both the Jobs and Queue lists, with some of the requested power being 

serviced while the rest is in queue. The changes made to the power being provided to a Job in Jobs list 

updates the future power. The Generators only act on the current power. At the beginning of every new 

cycle, current power equals future power. The actual C++ code for both the JobsList and Queue classes 

will not be shown in this paper. 

4. Topology Control Module Using Dijkstra’s Algorithm and Generator Processing Cycle 

The next diagram Fig.6 depicts the flow of events for the receiving of requests, monitoring of 

jobs/queues, and sending of offers and power messages for the Generator-JobsList-Queue-GProcessing 

half of the PB. An important feature of this flow is that while there are Jobs in the Job List or Queue, the 

cycle will repeat (2X faster than the Load cycle). This allows Generators to keep sending out power 

messages while the GProcessing, Joblist, and Queue classes continually update the Job in the servicing 

list and Queue. 

In order to proceed with the discussion of the remaining modules, it is necessary to understand the 

topology map the other modules use to find paths and generate priorities. This map is set up by the 

Topology Module located within the Control Module complex module. The Topology module utilizes the 

Topology class from the OMNET++ library to create a topology map of the grid. This map contains the 
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locations of each PB as well as the TLines linking them. The PB‟s are represented as nodes within the 

map and the TLines are represented as weighted connections. The connection weights correspond to the 

length of each TLine. The .ned file and actual C++ code associated with the Topology module is not 

included in this paper. 

4.1 Relaying through messages hub 

The workings of the message hub serve to relay offers, requests, and power from the LProcs and 

GProcs of the local and external PBs. All messages passing from the Load branch or Gen Branch of a 

given PB to either the local opposite branch or external PBs must pass through the Message Hub. The 

functions and parameters of the Message Hub serve this sole purpose (relaying data) and use 

communicate with the Topology Module to determine the routing of these messages. Because all 

functions of the Message Hub have the same basic premise (relay data/create new message/forward 

power), this module will not be discussed in detail in this paper. 

4.2 Tracking priorities of generators and loads  

The SingularPriority class keeps track of the individual priorities list for each GProcessing and 

LProcessing module. Individual priorities list refers to the combination of the Distance Only Priorities 

and Topology Sort Priorities without taking into account the effect of other similar GProc or LProc 

modules in the grid. The Distance Priorities and Topo Sort Priorities are discussed in detail in the 

DistancePriority and TopoSort class sections of the report. For more information about what defines a 

“non-individual” priority list, refer to the RelativePriority section of this report. 

The SingularPriority class is pointed to by “SingPrio” in both GProcessing and LProcessing modules 

as each instance of these modules creates and owns their own unique SingularPriority object. The actual 

C++ code for the SingularPriority class is not displayed in this paper. There is no .ned file for the 

SingularPriority class (la module). 

 

Fig. 6. Generator half of PB flow cycle. 
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4.3 Tracking topological Distance Priorities 

The  class keeps track of individual distance priorities. It obtains the distance to each 

PB that contains the opposite module type (LProc for GProc, GProc for LProc) and then sorts these PB‟s 

based on these varying distances. Each DistancePriority object is owned by the SingularPriority object 

owned by either a GProc or LProc module. 

5. Topological Sorting 

The topo sort class owned by each SingularPriority class essentially orders the PB‟s in the network by 

level of abstraction away from the originating PB and by number of connections. It works essentially the 

same as a normal topological sort except that topological sorts require a noncyclical graph, this topo sort 

class gets around that by assuming that all connections branch outward from the originating PB from least 

connections to more connections (eliminating the cyclic problem). 

6. Specific Modules Forms 

6.1 Control modules 

The Control Module NED file stores default configuration data for the grid model including the cycle 

times for the generators (base cycle time) as well as multipliers for the other cycle times. It stores 

parameters (within Priority Control) to determine the type of PB priority scheme to be used (Relative, 

Singular, Distance Only, Topo Sort only). Along with all other NED parameters, the Control Module 

owns three critical modules: Topology, Connection Modifier, and Priority Control. The Topology Module 

was already discussed previously. Priority Control and Connection Modifier will be discussed next 

section. The Control Module also has a parameter to dictate whether or not LoadProcessing modules will 

use generator environmental priorities in their decision making. 

6.2 Priority Control  

The Priority Control Module will not be discussed in detail as its main purpose is to relay the priorities 

from other classes to the requesting LProc/GProc. It takes in the parameters from its NED file in order to 

conclude which type of priority to send. The logic is fairly simple and if using singular priorities the 

Priority Control class simply relays the priorities lists from either SingularPriority, TopoSort, or 

DistancePriorities. If however, the Priority Control Module parameters are set to use relative priorities. 

Then it will take the singular versions of either the SingularPriority, TopoSort, or DistancePriorities and 

add to it the inverses priorities list from all other PB‟s containing the same type. It will then reduce this 

priority list and return that to the module. 

In essence this relative priority takes the priority list of the given PB and the culmination of the inverse 

priorities of all other similar modules (LProc/GProc against it). This however results in a very little 

weight on the individual priorities list in the overall summation and does not work very well for most 

network configurations (including the IEEE configuration). A better version would sum the inverse 

priorities, reduce them, and then add those to the original independent priorities list, thereby placing a 

larger weight on the individual priority. This implementation is described below: 

STEPS FOR RETURNING RELATIVE PRIORITY  

1. Determine whether to use Topo Priorities, Distance Priorities, or Combined (SingularPriorities) 

2. Sum all Inverse Priorities Lists of all similar module types (LProc/GProc) other than the 

requesting module 

3. Sort this summed list 

4. Reduce the summed list 

5. Add this list to the Individual Priorities List (Topo, Distance, or Combined) of the requesting 

module 

6. Sort & Reduce this list 
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7. return to the requesting module 

6.3 Connection modifier module  

The connection modifier currently only has the capabilities to disable connections based on its NED 

parameters (can be specified in each INI configuration file). This allows it to disable connections between 

any two PB‟s in the network at any time. This connection disable must be between two predetermined 

PBs at a predetermined time prior to starting the simulation. This disabling is accomplished by calling the 

makeFail() function of TLines for the given connection at the given time. The Connection Modifier 

identifies the connecting TLine by searching through the Topology Map and finding the connection 

between the two specified PBs. It then schedules a self-message to be received at the specified time. 

When the self-message is received, the makeFail() function is called to disable the TLine.  

6.4 TLines 

The TLines connection type is used to create the connections between any two separate PBs within 

each grid configuration. The length of each TLine must be established before runtime in the NED file for 

the given grid configuration. This length is used to set the message delay of each TLine. Each TLine can 

be disabled (no messages will pass through) either before starting the simulation in the NED file of the 

grid configuration or by using the Connection Modifier module to disable during runtime. If a connection 

is disabled during runtime, the makeFail () function of TLines is called. This function sets the connection 

to disabled and updates the display. A disabled TLines connection is displayed as a broken black line 

while enabled connections are simple black lines. NOTE. When a TLine is disabled, it does not allow any 

messages to pass through it (they are deleted), however the animation of the GUI still shows the message 

go through the TLine, but it is deleted at the very end of its travel. This can be confusing as it appears the 

message went through, but it did not. 

6.5 PB status  

This class is owned by each Message Hub Module (simply because each PB must have a Message 

Hub). It updates the tool tips of the PB, GProc, LProc, Facilities, and Generator modules. These tooltips 

can be accessed by hovering the mouse over any of these modules during runtime. 

The tool tip display updates relay the following information for each module: 

 PB: Total Number of Generators and Facilities as well as total power statistics 

 GProcessing: All Generators with power stats 

 Generator: All jobs in service and in queue with power stats and facility statistics 

 LProcessing: Each Job and power stats 

 Facilities: Jobs associated with that individual facility as well as power stats and servicing generators 

info 

The updating of the display strings (tooltips) during runtime requires string streams and reading of 

parameters from a variety of variables from all involved modules. Despite this, it does not affect the 

actual functioning of the grid model and so will not be discussed in detail. The continual updating of the 

tooltips for every module significantly reduces the performance of the model. If the desire is to run in 

real-time (real-time scheduler) or run at optimal speed. Then turn off the tool tip updating by setting 

Control Module display update parameter to false.  This can be done directly in the NED file or 

configuration to configuration in the INI file.  

7. Contingency Cases on Generator, Load Selections and Decision Schemes 

The following scenarios show some of the capabilities of the grid model. They are presented in a very 

specific manner with small custom networks built for each scenario, however each of these example 

behaviors apply to any network with any level of complexity. Many times throughout the case 

explanations the Facility/LoadProcessing combination is simply referred to as load. Despite this 
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nomenclature it is still a facility obtaining the power and LProcessing making the decisions.  

7.1 Simple power surplus case 

(A)  

This scenario shows a basic grid network with two generator containing PBs (PB 1 & 2) and one 

facility containing PB (PB 0). Both generators have more than enough capability to service the facility‟s 

job, however the generator at PB 1 has better environmental priority (environmental consideration is 

turned on) and lower cost.  

Since there is a surplus of available power the facility at PB 0 simply chooses the more desirable of the 

two generators. PB 1 generator begins supplying power and PB 2 generator remains idle. This scenario is 

described in the following Fig. 7, Fig.8 and Fig. 9. 

 

Fig. 7. Grid configuration at t = 0. 

 

Fig. 8. PB 0 obtaining power from PB 1 (better gen). 

 

Fig. 9. PB 2 gen is idle (tooltip). 
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(B)   

This scenario is very similar to the previous scenario (see previous explanation), except that neither 

generators are capable of servicing the total power need of the facility at PB 0 alone (they each have half 

that capacity). In response the Load (facility/LProc combo) at PB 0 chooses both generators at PB1 & 

PB2 to obtain the necessary power. The following Fig. 10 and Fig. 11 showcase these events. 

 

Fig. 10. PB 0 obtaining power from both PB 1. 

 

Fig. 11. Tooltip for PB 2. 

7.2 Simple power deficit cases 

(A)  

This scenario shows a basic grid network with two facility containing PBs (PB 1 & 2) and one 

generator containing PB (PB 0). The single generator does not have enough capability to service more 

than one of the facility jobs at a time. In this scenario both facilities have identical parameters except PB 

1 is much closer to PB 0 resulting in a lower PB singular priority (relative does not applicable; only one 

generator PB). Therefore PB 0 Gen chooses the job associated with PB 1 facility and places the other job 

in queue. Fig. 12 and Fig.13 display these events. 

Load splits power amongst multiple gens

Gen chooses best load
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Fig. 12. PB 0 gen chooses PB 1 (higher priority) to supply power. 

 

Fig. 13. PB 0 generator tooltip. 

It can also be seen from the Generator tool tip (Fig. 31) that the generator is servicing the job from 

PB1 and has the job from PB2 in queue. 

(B)  

This scenario is very similar to the last (see previous scenario) except that now the generator at PB 0 

has enough available power (300 total) to supply all of one of the jobs (200) and part of the other. The 

generator still chooses PB 1 to fulfill the total need, except now it also supplies 100 to PB 2 and only 

places 100 of that job into the queue. This shows that the Generators are capable of servicing multiple 

jobs from multiple PBs/Facilities. Fig. 14- Fig. 17 showcase these events. 

 

Fig. 14. PB 0 Supplies 200 to PB 1 (higher priority). 
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Fig. 15. PB 1 tooltip. 

 

Fig. 16. PB 0 gen supplies 100 to PB 0. 

 

Fig. 17. Tooltip for PB 0 generator.  

7.3 Time out case for job requests 

(A)  

This scenario involves one PB (PB 0) containing a generator (max power = 200MW) and two PBs (PB 

1 & PB2) containing facilities (power need = 200). The facility in PB 1 has a facility priority of 0 (highest 

priority, say a hospital) while the other (in PB2) has a facility priority of 3. Because of the difference in 

facility priority, the single generator must choose PB1‟s job regardless of other parameters. However, 

PB1‟s facility‟s job has a very short need time. Once the need time expires and the job terminates, the 

generator searches its queue and sees the job associated with PB2‟s facility and begins servicing. This 

scenario is depicted in the following Fig. 18- Fig.21: 

en gets job from queueG
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Fig. 18. PB 0 supplies power to PB 1. 

 

Fig. 19. PB 0 gen tooltip (prior to job termination. 

 

Fig. 20. PB 1 Job terminated, PB 0 selects queued job PB 2. 

 

Fig. 21. PB 0 gen tooltip (after termination). 
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(B)  

This scenario involves two generator (max power = 200) containing PBs (PB 0 & 1) and two facility 

(power need = 200) containing PBs (PB 2 & 3). The generator at PB 0 has much better parameters than 

the one at PB 1, hence loads want to choose that generator to fulfill their jobs. However, the facility at PB 

2 has a facility priority of 0 (critical) while PB3‟s facility is only 2. Because of this PB 0‟s generator 

chooses the job from PB 2. PB 3‟s Load Processing settles for the generator at PB 1 to fulfill its need. The 

facility at PB 2 has a short need time and therefore the job quickly expires. When this happens, the 

generator at PB 0 (better generator) looks into its queue and sees PB 3‟s job. It sends an offer update and 

PB 3 re-evaluates the generators servicing it and switches to PB 0‟s generator from PB 1‟s generator. The 

following Fig. 22- Fig. 26 summarize the scenario in OMNET++ simulation.  

 

Fig. 22. PB 0 sends to better load PB2. 

 
Fig. 23. PB 1 supplies worse load PB 3. 

 
Fig. 24. PB 0 gen tooltip. 
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Fig. 25. PB 0 supplies PB 3 after job termination. 

 
Fig. 26. PB 0 gen tooltip.  

7.4 Connection failures 

(A)   

In this scenario, there are two PB‟s with generators (PB 1 & PB2) and one PB with a facility (PB 0) 

with a demand of 115 MW of power. One of the generators (at PB 2) has much better power capabilities, 

environmental priority, lower pricing and with closer proximity to PB0. The other generator (at PB 1) is 

far less desirable. The Load Processing of PB 0 decides to choose the better generator (as it should), 

however at time t = 2s, the connection between PB 0 and PB 2 fails. After the selected generator fail to 

send the committed power amount for three cycles, the Load Processing realizes that something has gone 

wrong and begins to search for a different source of power. It then selects the readily available generator 

at PB 1 as this is now the sole source.  The following Fig. 27-Fig. 30 summarize the scenario in 

OMNET++ simulation.  

 

Fig. 27. Time t = 0. 
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Fig. 28. PB2 sending power. 

 

Fig. 29. Connection failure at t=2. 

 

Fig. 30. Automated power transfer from PB1. 

(B)  

The other scenario is similar to the previous case, except roles of the facility containing generator and 

PBs are switched. There is a single generator (PB 0) capable of supplying enough power for one of the 

two loads (PB 1 & PB2). When the connection to the better facility (PB 2) fails, the generator realizes that 

it is not sending power through after three missed cycles and looks into its queue to switch to the only job 

associated with a facility it can reach. The following Fig. 31- Fig. 33 summarize the scenario in 

OMNET++ simulation.  
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Fig. 31. PB 0 Gen supplies to better load PB 2. 

 

Fig. 32. Connection breaks. 

 

Fig. 33. PB 0 gen switches to supply to PB 1. 

7.5 Other cases 

(A)  

The following scenario demonstrates the ability of a PB with both a generator and facility to satisfy all 

power distribution/consumption locally. There are three PBs in the network, all of which contain one 

facility (power need = 150) and one generator (max power = 100), and each of these PBs is not sending or 

receiving any power from external PB sources. The following Fig. 34- Fig. 35 summarize the scenario in 

OMNET++ simulation. 
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Fig. 34. 3 Self Sufficient PBs in grid.  

 

Fig. 35. Tooltip for PB 1 gen. 

8. Conclusion 

The paper investigated a software-based framework for smart grid modeling and control. A topology-

sorting algorithm is successfully evaluated for an IEEE 14 bus system for routing supply to demand sites 

under several contingency cases. Our model provides a vast amount of parameters adjustable for 

conducting a comprehensive study under IEEE 802.15.4. The default values for the majority protocol 

parameters are stored in a single C++ header file. The parameters and characteristics of nodes in the 

OMNET++ network can easily be modified during the simulation. This is done via corresponding NED 

file for each of the modules (e.g., transmitterPower, and sensitivity), so that users can change them 

conveniently in the simulation configuration file omnetpp.ini.  
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