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Abstract 

Short-term wind power forecasting plays a major role in wind energy plant operations and the integration of wind 

power into traditional grid systems. It is the purpose of the present paper to provide a combined model, which is 

composed of the FFNN (Feed-Forward Neural Network) and LS-SVR (Least Squares Support Vector Regression) 

model, pertaining to the short-term wind power prediction. In this proposed approach, the FFNN and LS-SVR model 

can offer wind power predictions using inputs processed by PCA (Principal Component Analysis) respectively and 

the combined forecasting method is employed to obtain the new forecasting result. Additionally, in order to optimize 

the LS-SVR model, CSA (coupled simulated annealing) can assist the LS-SVR model achieve optimal performance. 

Our results indicate that the suggested combined model improves short-term wind power forecasts in comparison 

with the single models in the combined model and the traditional model. 
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1. Introduction 

Wind power conceived as a sustainable energy source is gaining popularities in the electric power 

generation. It is estimated that by 2030, wind power could reach 2,000 GW, and supply up to 17-19% of 

global electricity, creating over 2 million new jobs and reducing CO2 emissions by more than 3 billion 

tonnes per year [1]. Consequently, wind energy is becoming an important component in the supply mix to 

meet the growing demand for electric energy. However, owing to the uncertainty and volatility of wind 

power, large-scale integration of wind power in the wind farms will bring serious impact to the power 

system [2]. 

An accurate and reliable Wind Power Forecasting (WPF) model [3] is therefore essential for planning 

of economic load dispatch and grid management. It is in recent years that various methods have been 

proposed in the literature, such as physical methods, time series models and soft computing approaches, 

and applied to the domain of wind power forecasting. The physical methods make use of abundant 

weather data to forecast wind power. The Numerical Weather Prediction [4], [5] model is perceived as a 

typical physical approach to address the prediction problem. 

Time series models are widely used in the forecasting field and have also been proposed for short-term 

wind power forecasting. The models are established using historical data to tune the model parameters 

and by examining whether the fitting residuals possess the characteristics of a random walk process. 

Typical examples of time series models include the ARMA (autoregressive moving average) [6], the 

ARIMA (autoregressive integrated moving average) [7], exponential smoothing techniques [8] and grey 

predictors [9], [10]. 

Soft computing methods are extensively utilized by scholars to forecast wind power because such 

methods provide suitable performance capabilities, especially in tackling nonlinear problems. ANNs 
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(Artificial neural networks) are the most popular approaches among soft computing methods, which are 

based upon empirical risk minimization and asymptotic theories. Among artificial neural networks, the 

BPNN (Back-Propagation Neural Network) [11]-[13], the recurrent neural networks [14], the Elman 

neural network [15], the GRNN (General Regression Neural Network) [16], the FFNN (Feed-Forward 

Neural Network) [17] and MLP (Multi-Layer Perceptron network) [18] are among the most extensively 

used approaches for the prediction of wind power. In the same line with artificial neural networks, SVM 

(Support Vector Machine) [19]-[24] is another type of soft computing methods, which is based on a 

statistical learning theory and the structural risk minimization principle. 

In this paper, a novel ensemble method consisting of PCA (Principal Component Analysis), FFNN, 

LS-SVR (Least Squares Support Vector Regression), CSA (coupled simulated annealing) and the 

weighted average of the combined forecasting method is proposed to forecast the wind power. The main 

contributions of this paper are as follows. 

 PCA is not only utilized to reduce the dimension of the input variables but also to account for the 

variability of the input variables as far as possible. Before forecasting, PCA is used on the raw data to 

select the informative input variables efficiently. 

 CSA is introduced to as an optimization method for LS-SVR, which can seek the optimal parameters 

in LS-SVR. These parameters are important for performance of LS-SVR, and CSA is developed to 

assist this ensemble method enhance the accuracy of prediction. 

 Two kinds of forecasting results can be obtained by means of FFNN and LS-SVR. Furthermore, these 

different results can be combined reasonably to get the new result. 

This paper is organized as follows. We review the relevant theories and describes the proposed method 

in details in Section 2. The numerical results and discussions are provided in Section 3. Finally, 

conclusions are drawn in Section 4. 

2. The Proposed Method 

2.1. Overview 

Wind power forecasting is a challenging task because it is fluctuant and unable to find the general law. 

The wind power data and wind speed data in history, which are strongly related to the forecasting object, 

basically act as the input variables. However, the excess historical data may lead to information 

abundance and make it hard to recognize the key patterns beneath data. A key issue for the success of 

forecasting method is the suitable process of input variables. In the proposed method, PCA is presented to 

select the informative input variables efficiently. 

After the key features are selected, a three-layer feed forward neural network is constructed. This kind 

of network contains an input layer, an output layer and a hidden layer. Network with this structure is 

proved to have the ability to approximate any function [25]. The adaptive and data driven approach is 

suitable for complex system such as wind power prediction. In order to enhance the robustness of the 

forecasting model, a 10-fold cross-validation is applied in this paper. SVM is similar with neural network, 

but it can make the structural risk minimum. The generalization ability of learning machine is greatly 

improved owing to the establishment of the SVM model. When it comes to the scarce training samples or 

the weak robustness of training system, SVM still obtains study effect of the small error [26]. Therefore, 

LS-SVR is introduced in this forecasting model. As for the parameters in LS-SVR, CSA will seek their 

optimization. 

So far, FFNN and LS-SVR are presented and they have advantage and weakness respectively. In order 

to combine these forecasting models, the weighted average of the combined forecasting method is 

employed to achieve quality results. 

2.2. Principal component analysis 

Ever since the inception of Principal Component Analysis by Pearson [27], it gained popularity as a 

dimensionality reduction technique. PCA presumes that the observations can be projected on a new set of 
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axes, removing data redundancy and system noise in the process. Principal components are linear 

combinations of the original variables. The principal components are the directions that comprise the new 

coordinate axes. It is supposed that there are n observations and p different attributes in every observation. 
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The first principal component can then be formulated as a linear combination of the original variables 

explaining a maximum amount of variation, as follows: 

1 1 21 2 111
...1 p pF a X a XA X a X                                                                                                     (2) 

It can be shown that the principal components of A  are the eigenvectors of the covariance matrix of X. 

Naturally, there would be little use for PCA if all P components were retained. Hence, a criterion needs to 

be put forward that selects a number of principal components that explain a reasonable amount of 

variation. Scree plot can describe the eigenvectors and their sequence. In this plot, there is an inflection 

point that is smaller obviously than previous points. Therefore, these points before the inflection point are 

selected as principal components’ eigenvalue. 

2.3. Feed-forward neural network 

First introduced by McCulloch and Pitts [28], artificial neural network has gained increasingly 

popularity due to its inherent ability to capture nonlinearity and complexity. ANN is a kind of frameworks 

of computing flexibility which can be used to model a wide range of nonlinear problems. 

It is a universal approximator with high degree of accuracy and no prior assumption of the model form. 

The basic idea of ANNs is to update the coefficients in neural network until a desired forecast error is 

reached. Among the various kinds of ANNs, the three-layer feedforward neural network is most widely 

used model for forecasting.  

Before the forecasting procedure begins, network structure should be determined at first. As the input 

variable is determined by the feature selection procedure and the output variable is wind power, only the 

number of neurons in hidden layer needs to be specified. More neurons can help to reduce training error 

while leading to an over-fitting problem. There is no theory for neurons selection and trial and error 

approach is used in the proposed method. Neuron number varies from 2 to 10 until the optimal result is 

obtained based on out-of-sample prediction error. We constructed this neural network incorporated with 

Levenberg-Marquardt algorithm for training which can give a high accuracy with less time cost when 

compared to the classic Backward-propagation algorithm. 

2.4. Least squares support vector regression 

The modified version of SVM called LS-SVR [29] resulted in a set of linear equations instead of a 

quadratic programming problem. The brief reviews of the LS-SVR algorithm for regression problems are 

show as follows. Given a training set{ , }i i
yx , the regression formula can be constructed as follows, 

( )
T

y x bW                                                                                                                                         (3) 

where W denotes the weight vector and b is the bias term. And ( )x  is the nonlinear mapping function 

that transfers the input to a higher dimensional feature space. The weight vector W of the regression can 

be calculated by optimizing the following cost function containing a penalized regression error: 
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Subject to 
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The error variable at time t and g is a regulation constant. Based on the subjections, the Lagrange 

function is constructed as follows: 
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2.5. Coupled simulated annealing 

The CSA (Coupled Simulated Annealing) algorithm [30] is an advanced version of the SA (Simulated 

Annealing) algorithm and is characterized by a series of parallel SA processes. SA suffers from the 

problems of the premature and the sensitivity of the initialization parameters. The CSA is designed to 

upgrade the quality of solutions at the minimal cost of decreasing the convergence speed. In each 

optimization process of CSA, each single current state is performed separately and behaves as a single 

classical SA process. The main difference between SA and CSA lies in the acceptance probabilities. The 

SA process adopts the importance sampling technique to choose sample states of a particle system model 

to efficiently estimate physical quantities that are related to the system. In terms of the master equation of 

a thermodynamic system, this principle states that 

( ) exp( ( ) / )

( ) exp( ( ) / )

P x y E y T

P y x E x T
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where ( )P x y denotes the probability of transitioning from the current state x to a candidate state y, T 

is the setting temperature, E(x) and E(y) denote the energy of the current state x and current 

state y, respectively. The transfer probability can be represented as the product of a generation probability 

and an acceptance probability, i.e. ( ) ( ) ( )P x y G x y A x y    . If all candidate states take equal 

probabilities, i.e., the generation probability G=1/n with n denoting the number of possible states, then 

formula (7) can be simplified as follows: 
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The most common functions for acceptance probability are the Metropolis rule 
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And the rule 

1
( )

( ) ( )
1 exp( )

ac

k

A x y
E x E y

T

 




                                                                                                       (10) 

SA only considers the current solution for the acceptance decision of the probing state, whereas CSA 
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considers several current states and accepts a probing state based not only on the corresponding current 

state but also on the coupling term. The coupling can not only interchange information and produce 

cooperative contributing to the decision of whether uphill moves are accepted but also provide 

information for the entire optimization process toward the globally optimal solution. 

2.6. The weighted average of the combined forecasting method 

It is supposed that there are m forecasting models which will predict the same object. And then the 

combined forecasting model which comprises every single model is 

t
1

m

i it
i

k ff
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where tf  denotes the prediction value of the combined forecasting model at t, itf  is the prediction value 

of the ith forecasting model at t, ik  is the weight of the ith forecasting model, and it is satisfied 
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In the weighted average of the combined forecasting method, what is the important thing is seeking the 

weight of every forecasting model. Here is the procedure of this method. 

First, n m  matrix which means n forecasting units and m forecasting methods is constructed. The 

element ijx  of this matrix represents evaluation result of the jth forecasting method in the ith forecasting 

unit. After the normalization, ijx  becomes ijz  . 

What is more, the numerical sequence  0 01 02 0, ,..., nC C C C  that can judge which is superior is 

constructed.  
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Finally, Pearson correlation coefficient of the normalization sequence and the numerical sequence is 

calculated and the weight of every forecasting model is obtained. 
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Larger t  is, more the gap in the weights of every forecasting method is. However, t is unable to be 

much considerable, which may cause the bias. 

3. Case Study 

In this section the efficacy of the proposed approach is demonstrated with a case study and four 

subsections: collection of data, evaluation criteria of forecasting performance, simulation and comparison 

and discussion, which are presented sequentially. 

3.1. Collection of data 

In this paper, wind data from a wind farm located in China are used to demonstrate the effectiveness 
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and reliability of the proposed combined forecasting approach. Because there is a strong relationship 

between wind power data and wind speed data, this study samples wind power data and wind speed data 

in the wind farm for the time period in January, 2014. The data of the previous hour is informative 

explanatory variable for wind power forecasting. Consequently, it is perceived as an input for FFNN and 

LSSVR. Every sample includes the current wind power and the wind power and speed data of the 

previous hour. In this simulation, there are 300 samples for training and 10 samples for testing. 

3.2. Evaluation indices for forecasting performance 

To evaluate the performance of the proposed approach, three statistical indices are employed to 

measure the forecasting accuracy. They are the MAE (mean absolute error), RMSE (root mean square 

error) and MAPE (mean absolute percent error). These indices are defined as follows: 
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where it  is the observed value for the time period t  and ip  is the predicted value for the corresponding 

period. The MAE reveals how similar the predicted values are to the observed values, whereas the RMSE 

measures the overall deviation between the predicted values and the observed values. The MAPE is a 

unit-free measure of accuracy for the predicted wind series and is sensitive to small changes in the data. 

3.3. Data preprocessing 

The excess number of input, which is 10 in total, may cause the more time in training for FFNN and 

LSSVR. Moreover, the input variables just contain the wind power and wind speed data. Consequently, 

there is redundancy information among the input variables. It is reasonable to abstract the effective 

information and reduce the number of input. PCA is an appropriate approach to deal with this problem. 

After PCA, the number of input is reduced to 6 and the most information are reserved. Furthermore, the 

available inputs of the combined model were linearly normalized in the range  0 1，  to overcome the 

saturation phenomenon. 

 

Fig. 1. The hourly forecasting results by the FFNN, LS-SVR and the combined forecasting method. 
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3.4. Forecasting 

After the data preprocessing, the reconstructed data was processed into the input of the combined 

model. Therefore, 300 samples were selected as the train set for FFNN and LS-SVR. As for the 

parameters in LS-SVR, it is difficult to figure out the specific value. However, CSA is aimed to seek the 

optimization value. Hence, these two forecasting models are established after training and the forecasting 

results of the two forecasting models were achieved. Finally, the weighted average of the combined 

forecasting method is employed to combine FFNN and LS-SVR for receiving the combined forecasting 

results. Fig. 1. presents the hourly forecasting results by the FFNN, LS-SVR and the combined 

forecasting method. 

3.5. Comparisons and discussion 

To facilitate the analysis and discussions of the combined model, four models for short-term wind 

power forecasting were employed for comparison with the proposed model and the assessment of the 

prediction performance in this subsection. The established models were the AR (auto-regression model), 

the FFNN model, the LS-SVR model and the CSA-LSSVR model. In these four models, the AR model 

was the traditional forecasting model and others were the sub-models of the combined model.  

Table 1. The evaluation results obtained from different models 

models MAE RMSE MAPE 

AR 45.69 53.36 23.43 

FFNN 42.41 50.92 16.63 

LS-SVR 38.98 43.67 15.23 

CSA-LSSVR 38.45 41.58 14.87 

The combined model 21.75 23.57 9.72 

 

Table 1 shows the evaluation results obtained from the AR, FFNN, LS-SVR, CSA-LSSVR and the 

combined models with respect to the hourly wind power prediction. It can be readily seen from Table 1 

that the proposed hybrid approach outperforms the other models in terms of the three forecasting 

evaluation indices (MAE, RMSE and MAPE). 

Contrasted with the traditional forecasting approach, the less error can be seen in the soft computing 

methods. Furthermore, the CSA-LSSVR model performed better than the LS-SVR model. Additionally, 

the FFNN model and the CSA-LSSVR model can be combined using the weighted average of the 

combined forecasting method and the better forecasting results will emerge.  

More detailed analyses were performed. The proposed combined approach performed better than the 

other models in short-term wind power forecasting. For example, the developed method outperforms the 

other models with lower RMSE value of 23.57KW for one-hour ahead forecasting in contrast to 

53.36KW, 50.92KW, 43.67KW and 41.58KW for the AR, FFNN, LS-SVR and CSA-LSSVR models, 

respectively. A low MAPE value of 9.72% was obtained by the proposed model, while the AR, FFNN, 

LS-SVR and CSA-LSSVR methods resulted in higher MAPE values (23.43%, 16.63%, 15.23% and 

14.87%), respectively. The comparison of the predictions shows that the integration of the proposed data 

preprocessor and the forecasting engine is a good choice for short-term wind speed prediction. 

4. Conclusions 

With the rapid growth of wind energy, accurate and reliable methods and techniques for short-term 

wind power forecasting are urgently needed. Owing to the effect of various environmental factors, wind 

power data present high fluctuations, autocorrelation and stochastic volatility, making it difficult to 

forecast wind power using a single model. This paper proposed a hybrid forecasting approach based on 

the concept of combined prediction, which integrates the models of FFNN and CSA-LSSVR. For the 

prediction, CSA-LSSVR has the better prediction effort than LS-SVR in the light of the case study. And 

it is proved that the CSA algorithm can optimize the LS-SVR model’s parameters effectively. Although 
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the greater error can be obtained from the traditional forecasting model in comparison with FFNN and 

CSA-LSSVR, the level of the error is still high. In order to gain the better forecasting results, it is feasible 

to combine these two models. Furthermore, the combined model overcomes the shortages of FFNN and 

CSA-LSSVR. Compared with these two models, results of this study indicate that the prediction accuracy 

is greatly improved by utilizing the combined model. Therefore, the combined model is better for short-

term wind power forecasting. The effectiveness of the proposed model was demonstrated with real mean 

hour wind power data.  
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