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Abstract 

After the 2011 Great East Japan Earthquake in Japan, which subsequently shut down the nuclear power plant in 

Fukushima, many researchers who foresee such future threats have been proposing decentralized electricity 

management systems based on renewable green energy. In this paper, we study a graph partitioning problem of power 

grids assuming that each microgrid can transfer its electricity surplus to other clusters in a peer-to-peer way. We 

extend an existing graph partitioning algorithm such that it can check whether a set of clusters are self-sufficient after 

electricity sharing. Our experiments show that our method can reduce the cost of constructing a microgrid system and 

that it can produce a resilient graph partition that accommodates time-varying electricity surplus over the year. 
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1. Introduction 

After the 2011 Great East Japan Earthquake in Japan, which subsequently shut down the nuclear 

power plant in Fukushima, we are aware of a significant risk of depending on highly centralized 

electricity power resources. Many researchers who foresee such future threats thus have been proposing 

decentralized electricity management systems based on renewable green energy. 

We consider a distributed electricity system in which solar photovoltaic panels (PVs) are deployed for 

each microgrid. In such a system, electrical girds are partitioned into several microgrid that are self-

sufficient in the sense that their electricity supply and demand are balanced. Our objective is to find a 

partition that minimizes the cost of constructing a set of microgrids while making that partition resilient in 

the sense that each microgrid is well-balanced under time-varying supply and demand over the year. 

However, it is not trivial to find a partition that minimizes the cost while each cluster is self-sufficient 

because there is a trade-off between the size of microgrids and the difficulty of balancing their surplus. 

That is, the larger the size of microgrids, the easier to balance their surplus though the construction cost 

becomes higher at the same time. 

To overcome this issue, we propose a dynamic electricity management scheme in which microgrids 

exchange their electricity in a peer-to-peer way. We consider that a microgrid is self-sufficient if its 

surplus is under a given threshold after canceling out its surplus or shortage. Such a relaxed notion of 

electricity balance enables us to divide a grid into smaller ones further while satisfying the balancing 

requirement. We model an electrical power grid as a weighted graph in which every node and edge is 

associated with a weight value and study a graph partitioning problem in which each subgraph 

corresponds to a microgrid. 

In this paper, we develop a new graph partition algorithm that guarantees that each cluster can balance 

its electricity surplus under a given threshold through electricity exchange with other peers. We combine 

the Recursive Coordinate Geometric Bisection (RCB) algorithm, which considers vertical or horizontal 
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partitions [1], with a new verification algorithm for electricity balancing. The verification algorithm 

determines how clusters exchange electricity surplus with each other to distribute electricity surplus 

evenly. 

However, the verification process involves high computational cost of solving the combinatorial 

optimization problem. We thus develop an approximate algorithm based on the maximum flow algorithm 

by Edmonds and Karp [2]. We apply the algorithm to an aggregated graph constructed from the 

partitioned subgraphs. The basic idea is to compute the maximum flow from clusters of electricity surplus 

to those of shortage. We also extend the original flow algorithm such that it computes a well-balanced 

augmented path among nodes by iteratively apply the algorithm while incrementing edge capacity. 

We apply our graph partitioning algorithm to a synthesized surplus data for Yokohama city in Japan 

and evaluate how our proposed scheme reduce the construction cost of microgrids and how resilient 

computed partitions are in the presence of time-varying electricity demand and supply over the year.  

The rest of this paper is organized as follows. In Section 2, we formulate our problem as a graph 

clustering problem. In Section 3, we describe the algorithm for solving the graph clustering problem. In 

Section 4, we show how to estimate the demand and supply in Yokohama city in Japan. In Section 5, we 

show experimental results with the synthesized data in Section 4. We discuss related works for the graph 

clustering problem in Section 6 and conclude in Section 7. 

2. Graph Clustering Problem 

In this section, we formulate a graph clustering problem in the context of power grids. We model an 

electrical gird as a graph 𝐺 = (𝑉, 𝐸) where each node 𝑣 ∈ 𝑉 represents geographical area and each edge 

𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 represents a transmission line between two nodes 𝑣𝑖  and 𝑣𝑗 . We denote by 𝑤(𝑣) the 

weight of a node 𝑣 corresponding to the electricity surplus in node 𝑣’s area. We denote by 𝑐(𝑒𝑖𝑗) the 

weight of an edge 𝑒𝑖𝑗  corresponding to the transmission capacity between 𝑣𝑖 and 𝑣𝑗. We denote by 𝑉(𝐺) 

and 𝐸(𝐺) a finite set of nodes in graph 𝐺 and a finite set of edges in graph 𝐺, respectively. A partition 

𝑃 = {𝐺1, 𝐺2, ⋯ , 𝐺𝑛}  of graph 𝐺  is a finite set of subgraphs where ⋃ 𝑉(𝐺𝑖) = 𝑉𝑖∈{1,⋯,𝑛}  and 𝑉(𝐺𝑖) ∩

𝑉(𝐺𝑗) = ∅ for all 𝑖, 𝑗 ∈ {1, ⋯ , 𝑛}, 𝑖 ≠ 𝑗. We extend the notation of the “weight” to an aggregate graph 

consisting of subgraphs and edges between different subgraphs. That is, 𝑤(𝐺𝑖) =  ∑ 𝑤(𝑣)𝑣∈𝑉(𝐺𝑖)  is the 

total amount of surplus in a subgraph 𝐺𝑖 and 𝑐(𝐺𝑖 , 𝐺𝑗) =  ∑ 𝑐(𝑒𝑖𝑗)𝑣𝑖∈𝑉(𝐺𝑖),𝑣𝑗∈𝑉(𝐺𝑗),𝑒𝑖𝑗∈𝐸  is the total amount 

of transmission capacity between different subgraphs 𝐺𝑖 and 𝐺𝑗. 

2.1. Constraints for graph clustering problem 

Briefly speaking, a graph clustering problem is a problem to find a partition 𝑃 = {𝐺1, 𝐺2, ⋯ , 𝐺𝑛} of a 

given graph 𝐺 that satisfies the following conditions: 

 𝑃 minimizes the cost 𝐶 for building clusters of microgrids by deploying transmission lines, and 

 Each cluster 𝐺𝑖 ∈ 𝑃 is self-sufficient. 

In this section, we explain these conditions formulating our clustering problem. 

2.1.1. Infrastructure cost of building clusters 

In our scheme, we assume that every pair of two microgrids within a single cluster is connected and 

that two neighboring microgrids that belong to different clusters are also connected. To consider the cost 

for constructing such clusters, we define the cost 𝐶 as follows: 

𝐶 = 𝛼 ∑|𝑉(𝐺𝑖)|2 + 𝛽|𝐸(𝐺) ∖ ⋃ 𝐸(𝐺𝑖)|

𝑛

𝑖=1

𝑛

𝑖=1

 

where 𝛼 is a coefficient of the cost for transmission lines within a single cluster and 𝛽 is a coefficient of 
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the cost for transmission lines between different clusters. The first term represents an infrastructure cost 

for connecting each pair of microgrids within a single cluster and the second term represents that for 

connecting each pair of microgrids between different clusters. 

2.1.2. Balancing constraint for the clusters 

We say that a given partition 𝑃 is self-sufficient if an absolute value of average surplus per unit area of 

𝐺𝑖 is less than a given threshold 𝑘 for each subgraph 𝐺𝑖 ∈ 𝑃 after electricity sharing. More precisely, we 

say that a partition 𝑃 is self-sufficient if the following holds: 

max𝐺𝑖∈𝑃|𝑎𝑠′(𝐺𝑖)| ≤ 𝑘                                                                                                                                            (1) 

such that 

𝑎𝑠′(𝐺𝑖) =  
𝑤(𝐺𝑖) +  ∑ 𝑓(𝐺𝑗 , 𝐺𝑖)𝐺𝑗∈𝑃

|𝑉(𝐺𝑖)|
 

where 𝑘 is a given threshold, 𝑎𝑠′: 𝑃 → ℝ represents an average surplus of 𝐺𝑖 after balancing, 𝑓: 𝑃 × 𝑃 →

ℝ is the flow function such that 𝑓(𝐺𝑗, 𝐺𝑖) outputs the flow from the cluster 𝐺𝑗 to 𝐺𝑖. Here ℝ is a set of real 

numbers. Note that the flow 𝑓(𝐺𝑗 , 𝐺𝑖) should not exceed the transmission capacity 𝑐(𝐺𝑗 , 𝐺𝑖) and that 

𝑓(𝐺𝑗, 𝐺𝑖) =  −𝑓(𝐺𝑖 , 𝐺𝑗)  should hold for each pair of clusters 𝐺𝑖  and 𝐺𝑗 . We call 𝑀𝑈𝑉(𝑃) =

maxGi∈𝑃|𝑎𝑠′(𝐺𝑖)|  the Maximum Unbalanced Value (MUV) of 𝑃  and say that 𝐺𝑖  is a Maximum 

Unbalanced Subgraph (MUS) of 𝑃 if 𝑀𝑈𝑉(𝑃) = |𝑎𝑠′(𝐺𝑖)|. 
We also consider the case without electricity sharing. Then, 𝑎𝑠′ in (1) is replaced with the following 

function 𝑎𝑠: 

𝑎𝑠(𝐺𝑖) =  
𝑤(𝐺𝑖)

|𝑉(𝐺𝑖)|
 

2.2. Graph clustering problem 

Finally we formulate the graph clustering problem and its subproblem as follows [3]: 

Definition 1 (Partition balancing problem): Let 𝑃 be a partition and 𝑘 ∈ ℝ (𝑘 ≥ 0) be a threshold. 

A Partition balancing problem is a problem of verifying whether there exists a flow function 𝑓 such that 

𝑀𝑈𝑉(𝑃) ≤ 𝑘 holds under 𝑓. 

Definition 3 (Graph clustering problem): Let 𝐺 be a graph and 𝑘 ∈ ℝ (𝑘 ≥ 0) be a threshold. A 

graph clustering problem is a problem of finding a partition 𝑃 of graph 𝐺 in which: 

1. 𝐶(𝑃) ≤ 𝐶(𝑃′) holds for any partition 𝑃′ that satisfies the constraint (2), and 

2. There is a flow function 𝑓, which is a solution for the partition balancing problem for threshold 𝑘. 

3. Solving Graph Clustering Problem 

In this section, we explain how to solve the graph clustering problem in Section 2. We first introduce 

the Recursive Coordinate Geometric Bisection (RCB) algorithm and then describe the weighted graph 

balancing algorithm for solving the partition balancing problem. 

3.1. Recursive Coordinate Geometric Bisection (RCB) algorithm  

The RCB algorithm is a simple graph partitioning algorithm that divides clusters either vertically or 

horizontally [1]. Here is an overview of the RCB algorithm: 

1. Divide a graph into two subgraphs of almost equal weights with either a horizontal or a vertical 

partition. 

2. For each subgraph, repeat step 1 to divide the subgraph into smaller ones in a recursive way. 
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The RCB algorithm is an approximate algorithm but it works efficiently in practice. 

3.2. The RCB algorithm with electricity sharing 

We combine a modified version of the RCB algorithm with the weighted balancing algorithm below. 

In the modified RCB algorithm, we consider multiple candidate divisions of a graph and choose the best 

one minimizing the infrastructure cost. Also, that division must have a solution flow of the partition 

balancing problem. The weighted graph balancing algorithm is used to reduce the number of candidates 

for divisions. 

3.2.1. Weighted graph balancing algorithm 

The weighted balancing algorithm consists of two parts: (i) improving MUV of a given partition 𝑃 and 

(ii) comparing the improved MUV for a given threshold 𝑘. In this section, we explain the former part of 

the algorithm omitting the latter simple task. 

The main idea to improve MUV is to make a flow from the MUS in 𝑃 to other subgraphs repeatedly 

until 𝑀𝑈𝑉(𝑃) ≤  𝑘 holds or there is no such flow that improves MUV. To find such flow, we use the 

maximum flow algorithm by Edmonds and Karp [2]. The maximum flow problem involves finding a flow 

from a source node to a sink node that is maximum. 

To make a given partition applicable to the maximum flow algorithm, we introduce an aggregated 

graph 𝐺𝑎  =  (𝑉𝑎, 𝐸𝑎) in which each aggregated node 𝑣𝑖
𝑎 ∈  𝑉𝑎  represents a cluster 𝐺𝑖 ∈  𝑃  and each 

aggregated edge 𝑒𝑖𝑗
𝑎  =  (𝑣𝑖

𝑎 , 𝑣𝑗
𝑎) ∈  𝐸𝑎  represents a set of edges between clusters 𝐺𝑖  and 𝐺𝑗 . Each 

aggregated node 𝑣𝑖
𝑎 ∈  𝑉𝑎 has a weight 𝑤(𝑣𝑖

𝑎)  =  𝑤(𝐺𝑖) which represents the total amount of surplus in 

𝐺𝑖 and each aggregated edge 𝑒𝑖𝑗
𝑎 ∈  𝐸𝑎 has a weight 𝑐(𝑒𝑖𝑗

𝑎 )  = 𝑐(𝐺𝑖 , 𝐺𝑗) which represents the total amount 

of transmission capacity between 𝐺𝑖 and 𝐺𝑗. We also introduce a source node 𝑠 and a sink node 𝑡 to 𝑉𝑎. 

We add edges 𝑒𝑠𝑖
𝑎  =  (𝑠, 𝑣𝑖

𝑎) for nodes with positive surplus and edges 𝑒𝑖𝑡
𝑎  =  (𝑣𝑖

𝑎 , 𝑡) for nodes with 

negative surplus. Each edge 𝑒𝑠𝑖
𝑎  has a weight 𝑐(𝑒𝑠𝑖

𝑎 )  =  |𝑤(𝑣𝑖
𝑎)| and each and 𝑒𝑖𝑡

𝑎  has a capacity 𝑐(𝑒𝑖𝑡
𝑎)  =

 |𝑤(𝑣𝑖
𝑎)|. 

To simplify the discussion, we extend the concept of the MUS for an aggregated graph as follows: 

 We say that 𝑣𝑖
𝑎 ∈  𝑉𝑎 is the Most Unbalanced Node (MUN) if the corresponding subgraph 𝐺𝑖 is MUS. 

 We say that 𝑒𝑠𝑗
𝑎 ∈  𝐸𝑎 is the Most Unbalanced Edge (MUE) if 𝑣𝑗

𝑎 ∈  𝑉𝑎 is MUN and that 𝑒𝑖𝑡
𝑎 ∈  𝐸𝑎 is 

also MUE if 𝑣𝑖
𝑎 ∈  𝑉𝑎 is MUN. 

 

Fig. 1. Reduction from a partition to the aggregated graph. Each cluster 𝐺𝑖 is aggregated into the node 𝑣𝑖
𝑎 and edges 

between different clusters 𝐺𝑖 and 𝐺𝑗  is aggregated into the edge 𝑒𝑖𝑗
𝑎  =  (𝑣𝑖

𝑎 , 𝑣𝑗
𝑎). The nodes 𝑠 and 𝑡 are virtual nodes 

that represent source node and sink node respectively. 

Fig. 1 shows an example reduction from a partition into the corresponding aggregated graph. The node 

𝑣2
𝑎  is the MUN because corresponding subgraph 𝐺2 has the largest average surplus and 𝑒𝑠2 is the MUE. 
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By considering an aggregated graph, we can apply the max flow algorithm to find a path that may 

improve the MUV. However, just applying the max flow algorithm is not enough. First, it is not 

guaranteed that the MUV is improved for each application of the algorithm because the max flow 

algorithm may find a flow that does not pass through the MUN. To prevent such a situation, we modify 

the capacities of non MUEs that are connected with either the source or sink node. Second, making a flow 

with too much capacity may block other flows that can improve the MUV in the further iteration. We 

gradually increase edge capacities before each application of the max flow algorithm. 

Here is an overview of the weighted balanced algorithm. 

1. Construct an aggregated graph from a partition 𝑃. 

2. Increase capacities for edges 𝑒𝑖𝑗
𝑎  (𝑖 ≠  𝑠 ∧  𝑗 ≠  𝑡) to make a flow.  

3. Modify the capacities of non MUEs that are connected with either the sink or source node as follows: 

 Let 𝑣𝑚𝑢𝑛 ∈  𝑉𝑎 be the MUN. If 𝑤(𝑣𝑚𝑢𝑛)  >  0, set the capacities of all non MUEs 𝑒𝑠𝑗
𝑎  to 0. Otherwise 

set the capacities of all non MUEs 𝑒𝑖𝑡
𝑎  to 0. 

4. Compute the max flow 𝑓 from the source node to the sink node. 

5. If there is no such flow 𝑓, this algorithm returns false since 𝑃 cannot be balanced. 

6. Pick up a path 𝑝 from the source node to the sink node from the flow 𝑓 to limit the total amount of flow, 

and update the surplus for all nodes according to 𝑝. 

7. This algorithm returns true (i.e. 𝑃 can be balanced) if the aggregated graph 𝐺 is self-sufficient under 

the flow function. 

8. Otherwise, go to step 2 and continue to make a further flow to improve the MUV. 

4. Estimation of Electricity Affordability for Yokohama City 

In this section, we will explain how we estimate the electricity supply and demand for every 250m 

region in Yokohama city. We assume that the electricity is supplied from PVs which is installed on the 

roof for each house, and that it is stored in electric vehicles (EVs) not in use (See [4] for more details). 

First, we estimate the number of cars not in use to estimate the storage capacity of EVs. It is estimated 

by the following steps: 

 Determine the number of cars not in use in each unit area called cho-cho-moku by simulating the daily 

movements of peoples in Yokohama city using the agent-based transport simulator MATSim 

(http://matsim.org/). We use the Origin-Destination (OD) trip data (source: the Fourth Person Trip 

Survey in Tokyo Metropolitan Area) and the road-network data (source: the National Digital Road 

Map Database) whose attributes include road capacity, road width classification, link length, number 

of lanes, and travel speed. Note that the OD trip is available only at the distinct-wise level. 

 Convert the distinct-wise estimation into those at the 250m grid level. We apply the standard 

geostatistical method of Kyriakidis [5] for converting the distinct-wise estimation. 

Second, we estimate the electricity surplus by subtracting electricity household demand from 

electricity PV supply. The electricity supply 𝑃𝑉𝑖,𝑚 (𝑘𝑊ℎ/ℎ) in each grid in each month is estimated by 

using the following formula which is used in [4] and [6]: 

𝑃𝑉𝑖,𝑚 = 𝐼 ×  𝜏 ×  𝑟𝑜𝑜𝑓𝑖
𝑃𝑉  ×  𝜂𝑝𝑐  ×  𝐾𝑚,𝑝𝑡  ×  𝑇 

where 𝑖 is an index of 250m grids, 𝑚 is an index of months, 𝐼 is the total solar irradiance (𝑘𝑊ℎ/𝑚2/ℎ) 

calculated by MTPV-2 database [7], 𝜏  is the array conversion efficiency (= 0.1), 𝑟𝑜𝑜𝑓𝑖
𝑃𝑉  is the 

installation area in 𝑖 -th grid (𝑚2 ), 𝜂𝑝𝑐  is the efficiency of power conditioner (= 0.95), 𝐾𝑚,𝑝𝑡  is the 

temperature correction coefficient set for each month 𝑚 (e.g., May: 0.92; August: 1.00), and 𝑇 is the 

performance ratio (= 0.89). 𝑟𝑜𝑜𝑓𝑖
𝑃𝑉is calculated, following [8], as 

𝑟𝑜𝑜𝑓𝑖
𝑃𝑉 =

𝐵𝑖  ×  𝑙 ×  1

cos(𝜓)
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where 𝐵𝑖  is the building area in 𝑖-th grid, 𝑙 is the ratio of possible installation area on a roof (= 0.3), and 𝜓 

is the optimal angle of inclination (= 30°). Electricity demand in each month 𝐷𝑖,𝑚 is estimated as 

𝐷𝑖,𝑚 = 𝐹𝑖  ×  𝑤𝑚 

where 𝐹𝑖 is the total floor area in 𝑖-th grid, and 𝑤𝑚 is the unit electricity demand in each month. 

Finally, we can calculate the electricity affordability for each grid for each month by subtracting the 

electricity surplus from the storage capacity. Fig. 2 shows estimated storage affordability in February and 

July. As shown in Fig. 2, the affordability can vary from month to month. 

 

Fig. 2. Electricity affordability in February and July in Yokohama, Japan. 

5. Evaluation 

To evaluate the effectiveness of electricity sharing, we apply our graph partitioning algorithm to the 

estimated surplus data in Yokohama city in Japan that is described in the previous section. In this section, 

we evaluate our proposal with respect to: 

 The number of clusters and the construction cost, and 

 The metrics of resilience as described below. 

In general, the partition obtained from the surplus data in a certain month may not be feasible for the 

surplus in other months. If it is feasible for other months by electricity sharing, we say that that partition 

is resilient even in the situation when the electricity surplus varies over the year. Therefore we use the 

minimized MUV as a metric of the resilience for partitions because it represents how balanced the whole 

clusters are after electricity sharing. 

5.1. Comparison of the number of divisions and the cost ratio 

First, we compare the number of clusters and the cost ratios after applying our method and the original 

RCB method to the average estimated surplus data over the year. We use (𝛼, 𝛽)  =  (1, 1) and (1, 10) for 

the different combination of coefficients and varying the threshold 𝑘 within 100, 150, 200, 250, 300, 350 

and 400. 

Fig. 3 shows the number of divisions resulted by RCB with and without electricity sharing. The 𝑥-axis 

represents thresholds and 𝑦-axis represents the number of divisions. The solid line represents the number 

of divisions for our method and the dotted line represents the number of divisions for the RCB algorithm. 

Fig. 4 shows the cost ratio of our method compared with the RCB algorithm for each threshold. The 𝑥-

axis represents thresholds and 𝑦-axis represents the cost ratios. For all thresholds, our method can achieve 

greater number of divisions with less cost ratio than the original RCB algorithm. In Fig. 3, our method 

obtains the cluster whose size is four times larger than that with the original RCB algorithm when 

threshold is 400. In Fig. 4, our method reduces 70% of the construction cost compared with the RCB 

algorithm when thresholds are 200 and 250. It is because the construction cost is highly dominated by the 

number of divisions especially in the case the number of divisions is not large enough. 
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5.2. Comparison of the minimized MUV for each month 

We next compare the minimized MUV for each month by using the estimated data during the year. We 

calculated the minimized MUV by using: 

 The partition obtained from the average surplus during the year by our partitioning algorithm, and 

 The surplus data in Yokohama city for each month. 

Fig. 5 shows the minimized MUV by using RCB with and without our scheme. The 𝑥-axis represents 

months and 𝑦-axis represents the minimized MUV for each month. The solid line represents the result for 

our method and the dotted line represents the result for the RCB algorithm. Our method achieves less 

MUV than the original RCB for all months. This result shows that our scheme achieves a resilient 

partition under the presence of time-varying electricity surplus over the year. 

 
(𝛼, 𝛽)  =  (1, 1)                                       (𝛼, 𝛽)  =  (1, 10) 

Fig. 3. Comparison of partition results with and without electricity sharing. We use the different combination of 

coefficients 𝛼 and 𝛽 varying the threshold from 100 to 400. The solid line represents the result for our method and 

the dotted line represents the result for the RCB algorithm. 

 
(𝛼, 𝛽)  =  (1, 1)                                        (𝛼, 𝛽)  =  (1, 10) 

Fig. 4. Cost ratios of RCB with electricity sharing compared with the original RCB. We use the different combination 

of coefficients 𝛼 and 𝛽 varying the threshold from 100 to 400. 

 
(𝛼, 𝛽)  =  (1, 1)                                        (𝛼, 𝛽)  =  (1, 10) 

Fig. 5. Comparison of the minimized MUV with and without electricity sharing for each month. The solid line 
represents the result for our method and the dotted line represents the result for the RCB algorithm. 
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6. Related Works 

The weighted balancing algorithm is to improve the MUV by determine the flow from clusters with 

surplus to those with shortage. This problem can be considered as a dynamic resource allocation problem 

for evenly distributing resources to each user. 

Geng et al. [9] propose a “smart parking” system that suggests a parking spot for each driver to make 

an allocation for as many users as possible while minimizing user cost that reflects the distance from the 

parking spot to the user’s location for each time step. They formulate the requirements for each decision 

point as a Mixed-Integer Linear Programming (MILP) problem that is a problem of finding a solution of 

the equations in which all the variables are restricted in real numbers or integers. This allocation problem 

is a kind of matching problem between users and parking spots while our problem needs to allocate the 

surplus, which is numerical data, for all clusters. 

The Maximum Concurrent Flow Problem (MCFP) [10] is a similar mathematical problem to our 

partition balancing problem. In MCFP, an undirected graph, a set of pairs of nodes to make a flow, and 

the demands for each pair of nodes to be transferred are given assuming that the all edges have the same 

capacity. The objective of MCFP is to maximize the ratio of the flow relative to the demand. In [10], 

Shahrokhi and Matula formulate MCFP as a linear programming problem and show that it can be 

approximately solvable in polynomial time. Although MCFP is similar to our problem concerning a 

balanced flow in a given graph, our problem needs to support edges with different capacities in general. 

Also, we are interested in the weights of nodes rather than edges after electricity sharing. 

7. Conclusion 

We study a graph partitioning problem of a power grid to find a optimal partition that minimizes the 

cost for constructing the transmission lines. In this paper, we consider a graph partition in which clusters 

can exchange electricity in a peer-to-peer way to reduce the construction cost. We develop a graph 

partition algorithm that verifies whether a resulting partition can be balanced through electricity 

exchanging between clusters. 

Through the experiments with the synthesized surplus data in Yokohama city in Japan, our method 

outperformed the RCB algorithm that does not consider the electricity sharing in terms of the number of 

divisions and the cost ratios. Furthermore, our method produce a resilient partition under the presence of 

varying surpluses from month to month. As future work, we plan to evaluate our method with more 

comprehensive datasets. 
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