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Abstract 

Smart Grids components include scalable metering, energy prediction (both production and consumption) and pricing. 

One of their goals consists to attract consumers to use green energy, to promote periods of low consumption and to 

dissuade customers from using their greedy devices during peak periods. The objective consists to determine the 

optimal suggested prices by the energy operator and the optimal demands of consumers. In this paper, we propose a 

theoretical model based on Stackelberg game to adjust prices of green energy. The proposed game is composed by a 

leader represented by the operator, and multiple followers represented by consumers. A Nash/Stackelberg equilibrium 

solution is found. Performance results confirm the uniqueness of Nash equilibrium and that a "best reply" dynamics 

for the repeated game converges to this equilibrium. 
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1. Introduction 

To meet the future power demand and the aim to reduce 𝐶𝑂2  emissions designers of the next 

generation of electric power, distribution grid initiate a large research and technological action under the 

"Smart Grid" banner that starts to tackle some of the following issues: 

 Significant reductions in residential peak demand energy consumption achieved by providing real-time 

price and environmental signals in conjunction with advanced in-home technologies. 

 Integration of the green energy production from both second tier operators and private clients to reduce 

carbon footprint. This energy source is hence taking a major role in the future Smart Grid. Electric 

vehicles are also considered as very important future elements as they can affect the consumption 

peaks but they could also act as energy buffers to provide missing energy during these peaks [1]. 

 Provide an open infrastructure for newcomers to be easily integrated, in the same way as mobile 

telecom market has been deregulated. 

 Provision of real time measurement and control tools that provide scalable and preferment actions on 

the energy grid. 

The resulting architecture of a Smart Grid is defined as a standard power grid (traditional power 

distribution network) that is coupled with both a telecommunication network and a distributed 

information management system, and associated with services (handled within a energy-dedicated service 

architecture) to allow the following: 

 Better energy consumption management, 

 Better management of energy production and delivery (production versus consumption rationalization), 

 Efficient and dynamic mix of heterogeneous energy sources (including renewable ones), 

 Power outage impacts reduction, 
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 Dynamic pricing, 

 Global energy efficiency increasing. 

The telecommunication network is mainly used for metering/monitoring data collection and for the 

data distribution related to the enforcement of Smart Grid and energy management/control policies. The 

information management system is mainly carried out for the distributed storage and processing of data 

used for the decision making related to the Smart Grid and energy control/management operations. This 

Smart Grid architecture is therefore based on several and correlated key components (Real-time hybrid 

smart metering, distributed management and control infrastructure, data mining, data aggregation and 

data analysis infrastructure helping the actors to process and infer energy information and prediction and 

pricing tools), as shown in Fig. 1. 

 

Fig. 1. Smart grid global view (GridWise Alliance). 

An important element of the smart grid chain concerns the pricing. We believe that dynamic pricing is 

the only way to attract consumers to periods of low consumption and to dissuade them from using their 

greedy devices in peak periods. It is clearly the objective of this paper. 

The main objective of dynamic pricing, at least from the energy provider side, is the adjustment of 

energy price according to market demand, e.g. increasing the price during peak periods. The expected 

effect is the customer shifting of its consumption to off-peak periods (cascading power outage avoidance). 

From the customer side, the main criteria that influences his consumption is the energy price (generally 

higher during rush hours i.e. peaks), but other criteria could be considered such as, for example, energy 

type (renewable or not) and customer profiles. 

In our work, we consider the problem of constrained dynamic pricing in a Stackelberg/Nash manner 

taking into account finite resources or energy (limited resources) constraints. We also consider 

differentiated pricing proposals to better explore the revenue space and then select efficient strategies 

leading to higher payoffs. This differentiation can also be justified by considering clients in different 

geographic regions. Thus, we investigate game theoretical approaches to optimally determine the 

dynamic pricing menu to be proposed by the energy operator to customers. In the same time, we seek 

solutions to find optimal clients (often confused with customers) consumption demands according to the 

proposed prices. 

The central goal of this paper is to find an agreement between customers and the operator. This allows 

different customers to partake in the interaction by proposing their respective demands and this in turn 

enable the energy operator to better manage its resources (energy). This is a non-cooperative game, where 

each customer is interested in maximizing her/his utility that can be modeled as a Stackelberg game [2], 

where the operator set prices and clients update their consumption to maximize their payoffs. 

The remainder of this paper is organized as follows: Section II discusses a state of the art of game 

theory and the different components involved in a smart grid topology. Section III is dedicated to game 
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theory approaches to handle with dynamic pricing problem. Section IV shows convergence steps to 

determine a Nash Equilibrium Point (NEP) of a game. Section V is dedicated to solve the one leader 

multiple followers’ game. The objective consists to determine the optimal pricing proposal under some 

constraints. Conclusions and future work follow in Section VI. 

2. Related Work and Motivation 

Smart Grid key components has to be considered globally and the communication part should not be 

dealt with independently. Network is clearly not the main objective in the smart grid forums and 

standards, but it is a strong enabler. We should hence consider this as a use case with specific needs to 

propose adequate solutions and protocols. In this paper, we focus on one potential problem related to 

pricing. It cannot be achieved without the presence of a real-time and secure network infrastructure. 

Intelligence, learning, processing, inference and self-adaptation have to be introduced in the power 

managing units and the control systems in order to make them cognitive, in every power grid level, 

processes and entities [3], [4]. This implies the support of decentralized and distributed control operations 

of the Smart Grid, as well as the carrying out of distributed and autonomous multi-criteria decision 

making. This also implies the design of a semantic open data model dedicated to the description and the 

inference of energy information/system knowledge. Such a knowledge model should in particular enable: 

the automation of control and monitoring systems, the better estimate of energy consumption levels, as 

well as the interworking of energy systems [5]. 

Smart Grids decision making related to pricing mainly rely: on the history modeling and prevision of 

both the energy production level and the energy consumption, as well as on the energy type (e.g. 

renewable or not) and price. For the client side (the consumer), we developed a tool in the VELCRI 

project [1] that learns his/her power consumption and that estimates the life of his batteries. It can predict 

the time remaining and can decide if the recharging process can wait for the low price energy period. The 

power provider is also learning the behavior of his clients on a minute/hour/day basis from one side and 

making prediction on the green power generation according to weather forecast on the other. He 

combines the two sets and produces power expectation per zone. This information is decisive to announce 

the pricing for the energy in high and low consumption periods (see Fig. 2). 

 

Fig. 2. Prediction scheme. 

One can cite the U.S as an example of important pioneer country for the deployment of Smart Grids 

technologies and various forms of dynamic pricing already been considered over there [6]—[8]; 

 Time of Use (ToU), standard two part and pre-establish rate comprising on-peak and off-peak periods, 

 Critical Peak Pricing (CPP), similar to ToU with a more expensive pricing strategy during peak and 

day hours. Generally, the estimate of next day load (peaks) trigger the switching of pricing strategies 

to CPP, 

 Critical Peak Rebates (CPR), comprises same critical pricing periods as CPP but provides customer 

with price rebates proportional to their consumption reduction during peaks, 

 Real Time Pricing (RTP or Hourly Pricing - HP), offers prices reflecting the wholesale energy cost and 

varying according to an hourly basis, 
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 Fixed Rate Pricing (FRP). 

All these pricing strategies provide options for consumers to influence their electricity bill and have 

therefore to be considered in this paper.  

 In [8], the authors have developed 4 time-based pricing strategies (ToU, CPP, Peak Time Rebate or 

PTR and RTP). They have applied those pricing strategies to three consumer classes (Residential, Small 

and Medium General Service), their goal being to simulate the consumer responses for modeling the 

impact of their pricing strategies. In [7]—[9], authors show that, among all those pricing strategies, CPP 

was the most efficient in terms of peak reduction (up to 20% of energy usage reduction), while RTP  

enable a significant reduction of customer annual electricity bill (an average of 12% reduction). 

Few studies have already been conducted for applying game theory to energy demand management 

and dynamic pricing. In [10], the authors have proposed a distributed strategy for energy demand 

management among multiple collaborating consumers and so they are not addressing the pricing 

problematic. In [11] and [12], the authors propose a multi-consumer dynamic pricing game using two 

strategies: opportunistic electricity or traditional one. In [11], the authors are only considering the 

scenario where one power source or generator (not the energy provider itself) is shared among multiple 

consumers. They only implement a simple pricing strategy based on client cooperation and message 

exchange. In [12], the authors try to incorporate multiple providers (2 types, renewable or not) into their 

game formulation. However, they both (i.e. [11], [12]) use a less dynamic consumer behavior than the one 

we are using and they both are not implementing the same utility functions as us. 

In this paper, we propose a novel algorithm based on game theory principles to adjust the price and the 

demand using a game. The actors of this game are the energy provider (or for simplicity the operator) and 

the consumers. We consider a situation where each player can change its strategy one after the other and 

adopts a "best reply" response. It is shown that this dynamic converges to the Nash equilibrium [13] of 

the strategic game. Assuming the operator knows the consumer's utility function, this equilibrium point 

may give him some information to adjust its price leading to a desired level of consumption. 

The game theory has been applied to model several information systems and communication problems. 

It can bring an innovative solution to systems with different independent players, where the action of each 

player has an incidence on the overall utility of the system [14]-[16] and [17]. 

In our context and after the abstraction of the network part, players correspond to energy providers and 

consumers. We may go beyond this first simple classification by introducing more players in the network 

side (infrastructure operator, mobile operator, facility operator, clearing house, etc…) but we restrict our 

analysis in this paper to a simple model. Note that in the simple model presented here, we may consider 

that the consumer represents in fact a set of several clients, all having the same utility function (and taking 

their action simultaneously). 

Note also that the case where end client is buying and selling back energy when she generates green 

power, it is assimilated to the simple provider and client game. 

The strategy chosen by players may be in general concurrent or cooperative. It is concurrent when the 

players compete on the resource and it becomes cooperative when players work together to improve the 

utility outcome. 

In the Smart Grid context, we can find both cases. For example, identical energy operators may be 

concurrent to attract a client and they may be cooperative to overcome a peak energy consumption period. 

3. Dynamic Pricing Game Theory Approach 

We describe hereafter the solution we propose to optimize the system and to find an equilibrium point. 

We consider in the smart grid case in general and in this study in particular that the strategy of players is 

restricted to the production and the consumption of energy for both types of players (energy operators and 

end clients). 

The best strategy for players in the smart grid context can be seen from two different perspectives. 

The first best strategy could be a solution that minimizes the overall non green energy consumption. 

This could correspond to a patriotic action in favor of the planet, etc. 
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The second strategy would be to maximize gains of energy operators and minimize expenditures of 

end clients. 

In the first case, the pure strategies would correspond to the energy production and to the energy 

consumption actions. 

We know from field trials that green energy can be easily lost because not consumed [18]. So we need 

to match the production with the expected consumption. While in conventional energy production phase 

adjustments can be made according to the environmental parameters such as time of day, of year, weather, 

etc. 

Our algorithm is combining both approaches.  We try to find the dynamic pricing strategy that 

improves green energy consumption and that is pricewise interesting for end customers. 

The game tree can be sketched in Fig. 3 to understand the trends. 

 

Fig. 3. The different cases in a smart grid simple context. 

Fig. 3 shows essentially green energy production as a sequential game between energy operator with a 

vector of strategies given by (producing; non-producing), and customers with a strategy vector given by 

(consuming; idle). When the operator strategy consists to produce energy, the clients may consume it or 

not. In case of clients play "idle" strategy, then the energy produced is lost and this is a budget deficit for 

the operator, but in the same time, it is also considered as an amount of money not saved by clients if they 

consume later non green and more expensive energy. We derive the following normal form of the 

corresponding strategic game (i.e. when the players take actions simultaneously). For the sake of 

simplicity, we will use "+" (respectively "-") to indicate positive (respectively. negative) utility function 

(payoff), and by 0 to indicate idle situation. 

Table 1. Outcome of the green energy production game 

Provider/Client Consumes Idle 

Produces [+; +] [-;  0] 

Idle [0;  -] [0; 0] 

 

According to Table 1, one can observe the following: 

 When energy is produced and consumed we have the first situation and both players can win, 

 When energy is not produced but the consumer needs power, we  consider that the client suffers a loss, 

 When energy is produced but not consumed we consider that the provider loses money, 

 When both players are idle 

By applying the definition of a Nash Equilibrium (see [13] for more details) on Table 1, we can deduce 

that this game admits a unique Nash equilibrium: it corresponds to the outcome ([+; +]). 

For this kind of game, we can propose several strategies. We have restricted the study and the solution 

to the following strategies: 

For the producer, the strategy is to find the best price, 
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For the client, the strategy is to find the best amount of  energy consumption according to the proposed 

price, 

We can also adopt a reasoning similar to [1] with the global satisfaction of achieving an action in favor 

to humanity (subjective measures that are arbitrary) but we prefer to find an objective with simple 

measures to attract both players. 

The utility function that we propose gives satisfaction to a consumer when he believes that green 

energy has reduced the energy cost. This is translated to a saving cost for this consumer.   

We assume that the price dynamic. The same reasoning is applied to the energy operator as it saves 

expensive energy and hence reduces its cost. 

We define 𝐶𝑐(𝑥, 𝑦) and 𝐶𝑜𝑝𝑒𝑟(𝑥, 𝑦) to be the utility and revenue functions for consumer and operator 

respectively, where 𝑥  denotes the amount energy consumption chosen by the client and𝑦 , the price set by 

the operator. 

The consumer will consume energy from the operator up to a certain limit that corresponds to his 

requirements as shown in Fig. 4. 

 

Fig. 4. Consumption pattern of the consumer 

We now propose a mathematical formulation of the utility function for a consumer as a function of his 

consumption, assuming a fixed price by the operator, as follows: 

𝐶𝑐(𝑥, 𝑦) = 𝐴𝑙𝑛(𝑥) − 𝑦𝑥                                                                                                                                         (1) 

where A is a positive constant (A > 0), 𝑥 is the consumption variable and 𝑦 is the price published by the 

operator. 

Note that the normal consumption as shown in Figure 4 corresponds to a logarithmic progression but it 

is negatively affected if the price is increased. This kind of curves can be observed when charging an 

electric vehicle or with a normal domestic behavior. 

We assume a typical revenue function of the operator given as follows: 

𝐶𝑜𝑝𝑒𝑟(𝑥, 𝑦) = 𝑦𝑥 − 𝛼𝑦2                                                                                                                         (2) 

In the second term of (2), parameter α (α >0) is used to regulate power when the price is very low, 

dissuading hence greedy consumption from a single client. 

To deduce the optimal pricing strategy of the energy operator, and then finding the best consumption 

demand of a customer, we derive the following operations: 

2 0 2   
operC

x y x ay
y





                                                                                                              (3) 

In the following, we find the optimum response function for the consumer utility (see Fig. 5) by 

deriving with respect to cost. We first use (1) to replace the value of 𝑥 find in (3) in the client utility 

function (1). We obtain: 
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𝐶𝑐(𝑥, 𝑦) = 𝐴𝑙𝑛(2𝛼𝑦) − 2𝛼𝑦² 

 

Fig. 5. Best response function for the consumer. 

We seek for the maximum value of 𝐶𝑐(𝑥, 𝑦) as follows: 

2
24

4 0 4   
2

cC A b b ac
y y A

y y a


 



  
      

Which leads to deduce  𝑦 =
1

2
√

𝐴

𝛼
  . 

Now we replace this value in (3) and we get easily = 𝛼√
𝐴

𝛼
 . 

Then the couple of strategies at the Nash equilibrium is given by: 

* * 1
( ; ) ;

2

A A
x y 

 

 
   
 

                                                                                                               (4) 

To prove the uniqueness of the Nash Equilibrium Point(𝑥∗; 𝑦∗), we verify the following: 

𝜕2𝐶𝑐

𝜕𝑦2 = −
𝐴

𝑦2 − 4𝛼 < 0  as 𝛼 > 0 and 𝐴 > 0 

Moreover, we also verify: 

𝜕2𝐶𝑜𝑝𝑒𝑟

𝜕𝑦2 = −2𝛼 < 0 as 𝛼 > 0 

 

Fig. 6. Finding the nash equilibrium. 
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This leads to conclude the uniqueness of the NEP found in (4). Fig. 6 shows clearly this result and the 

uniqueness of the NEP. 

4. Convergence to a Nash Equilibrium Point 

In this particular problem and with our assumptions, the two defined curves (operator and consumer 

payoffs) will intersect in a single point: the Nash equilibrium of the strategic game. Moreover, our 

simulations with MATLAB [19] illustrate that the strategies adopted by the two players (best reply 

dynamics) leads to the same result, and hence the system converges to this point after a certain number of 

iterations (see Fig. 7). 

 

Fig. 7. Algorithm steps convergence towards equilibrium. 

4.1. Game assumptions 

By assuming that both players know all the characteristics of the game (both utility functions), and all 

players actions are known at each step of the strategic interaction, we precise the nature of a complete 

information game. As it is shown in Fig. 7, the algorithm in the operator side starts by assigning a price to 

the green power. The price here is high hence the client adopts certain consumption. Afterwards, the 

operator reacts to this and decreases price leading to increasing client consumption. This procedure is 

continued and converges to the equilibrium point. 

4.2. Analysis and potential extensions 

The resulting MATLAB application is based on the equations derived before but is enriched with 

many watchdogs that prevent for example from proposing too high or too low prices. We also need to 

adjust parameters to the kind and category of power meters. Details such as the nominal power, the 

presence of day/night tariffs, etc., are taken into account. 

We note that the presented solution is suitable only for the first case in Table 1. We can extrapolate the 

system to propose a solution especially to encourage the client to consume green energy if he did not yet 

start any activity. 

To enhance the quality of our approach, the equations (1) and (2) can be improved with several details 

to sketch better the kind of client or operator we are dealing with. Finally, one can adapt dynamic games 

where one of the players or both change his strategy during the game. The result should be different and 

depends on the new Nash equilibrium with under time constraints. 

5. Capturing the Cumulative Domestic Consumption 

This section describes a more realistic scenario that includes hundreds, or thousands of clients 

(consumers). In real life, consumers do not start or synchronize their energy consumption. Moreover, 

consumption peaks happen during known periods such as between 19 PM and 20 PM in Western Europe. 
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This scenario can be modeled as shown in Fig. 8, in which we distinguish two levels: the operator and 

consumers levels. 

 

Fig. 8. One leader and multiple followers’ game. 

We note two cases for the pricing policy: uniform prices (all the considered customers have the same 

price), and differentiated prices (energy operator proposes different prices to consumers according to 

some criteria). In case of differentiated prices (respectively. uniform prices), we note by 

𝑦𝑖
𝑜𝑝𝑒𝑟

(respectively.𝑦𝑜𝑝𝑒𝑟)  the proposed price by the operator "𝑜𝑝𝑒𝑟" to consumer "𝑖". 

5.1 Uniform prices cases 

In this case, we suppose that the operator suggests uniform prices to customers, so that 𝑦𝑖
𝑜𝑝𝑒𝑟

= 𝑦𝑜𝑝𝑒𝑟 . 

Furthermore, normally, we would also add the time dimension in such a summation as customers start 

their electric devices in a desynchronized manner. However, as the consumption function is taking the 

dynamicity of cost as a variable, this can implicitly replace the effect of time and can hence represent the 

same effect of de-correlation between clients. 

The game is now equivalent to the scenario where a consumer has the following objective function: 

𝐶𝑖(𝑥, 𝑦) = 𝐴𝑖 ln(𝑥𝑖) − 𝑦𝑜𝑝𝑒𝑟𝑥𝑖                                                                                                                (5) 

To maximize the function (5), we give its derivative according to 𝑥𝑖, and let it equal to zero: 

𝜕𝐶𝑖(𝑥,𝑦)

𝜕𝑥𝑖
=

𝐴𝑖

𝑥𝑖
− 𝑦𝑜𝑝𝑒𝑟 = 0                                                                                                                        (6) 

Solving equation (\ref{derive10}) leads to obtain the following relation: 

𝑥𝑖 =
𝐴𝑖

𝑦𝑜𝑝𝑒𝑟                                                                                                                                                (7) 

In the other hand, the objective function of the operator is defined as follows: 

𝐶𝑜𝑝𝑒𝑟(𝑥, 𝑦) = ∑ 𝑦𝑜𝑝𝑒𝑟𝑥𝑖 − 𝛼𝑖(𝑦𝑜𝑝𝑒𝑟)²𝑁
𝑖=1                                                                                               (8) 

Subject to limited resource constraints noted by “AR” for Available Resources within the operator: 

∑ 𝑥𝑖 ≤ 𝐴𝑅𝑁
𝑖=1                                                                                                                                           (9) 

To maximize the function (8) over the vector of demands 𝑥 and subject to the constraints given by (9), 

we use the Lagrangian method: 

𝐿(𝑦, 𝜆) = ∑ 𝑦𝑜𝑝𝑒𝑟𝑥𝑖 − 𝛼𝑖(𝑦𝑜𝑝𝑒𝑟)2 −
𝑁

𝑖=1
𝜆 [∑ 𝑥𝑖 − 𝐴𝑅

𝑁

𝑖=1
] 
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λ is the Lagrangian multiplier. Let us now calculate the derivative of 𝐿 with respect to 𝑦𝑜𝑝𝑒𝑟 , and let it 

equal to zero: 

𝜕𝐿(𝑦,𝜆)

𝜕𝑦𝑜𝑝𝑒𝑟 = ∑ 𝑥𝑖 − 2𝛼𝑖𝑦
𝑜𝑝𝑒𝑟 = 0𝑁

𝑖=1                                                                                                          (10) 

In the same manner, we also calculate the derivative of 𝐿 with respect to λ: 

𝜕𝐿(𝑦,𝜆)

𝜕𝜆
= ∑ 𝑥𝑖 − 𝐴𝑅 = 0𝑁

𝑖=1                                                                                                                   (11) 

From (10), we deduce: 

∑ 𝑥𝑖 = ∑ 2𝛼𝑖𝑦𝑜𝑝𝑒𝑟 = 2𝑦𝑜𝑝𝑒𝑟 ∑ 𝛼𝑖 = 2𝑦𝑜𝑝𝑒𝑟𝑁𝛼̅

𝑁

𝑖=1

𝑁

𝑖=1

𝑁

𝑖=1

 

where 𝛼̅ =
1

𝑁
∑ 𝛼𝑖

𝑁
𝑖=1 . 

By using (11), we deduce: 

2𝑁𝛼̅𝑦𝑜𝑝𝑒𝑟 = 𝐴𝑅 

Which leads to: 

(𝑦𝑜𝑝𝑒𝑟)∗ =
𝐴𝑅

2𝑁𝛼̅
 

From (7), we also get the optimal consumption of a client i: 

𝑥𝑖
∗ = 2𝑁𝛼̅

𝐴𝑖

𝐴𝑅
 

We deduce the Nash equilibrium point in case of uniform prices given by: 

(𝑥𝑖
∗; (𝑦𝑜𝑝𝑒𝑟)∗) = (2𝑁𝛼̅

𝐴𝑖

𝐴𝑅
; 

𝐴𝑅

2𝑁𝛼̅
) 

5.2 Differentiated prices case 

We consider different possible prices proposed by the operator to different consumers. We assume that 

the prices are different from a geographic location to another, and the operator wants to favorite certain 

categories for different reasons. The net utility function of a consumer i is then given as follows: 

𝐶𝑖(𝑥𝑖 , 𝑦) = 𝐴𝑖 ln(𝑥𝑖) − 𝑦𝑖
𝑜𝑝𝑒𝑟

𝑥𝑖                                                                                                            (12) 

In the same manner, we give the revenue of the operator when dealing with 𝑁customers: 

𝐶𝑜𝑝𝑒𝑟(𝑥, 𝑦) = ∑ (𝑦𝑖
𝑜𝑝𝑒𝑟

𝑥𝑖 − 𝛼𝑖(𝑦𝑖
𝑜𝑝𝑒𝑟

)²)𝑁
𝑖=1                                                                                          (13) 

Subject to resource available constraints: 

∑ 𝑥𝑖 ≤ 𝐴𝑅𝑁
𝑖=1                                                                                                                                         (14) 

We first maximize (12) to obtain the first relation between customer's consumption and the pricing 

suggested by the operator: 
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𝜕𝐶𝑖(𝑥, 𝑦)

𝜕𝑥𝑖

=
𝐴𝑖

𝑥𝑖

− 𝑦𝑖
𝑜𝑝𝑒𝑟

= 0 

This leads to obtain: 

𝑥𝑖 =
𝐴𝑖

𝑦
𝑖
𝑜𝑝𝑒𝑟 , 𝑦𝑖

𝑜𝑝𝑒𝑟
> 0                                                                                                                           (15) 

To maximize the function (13) over the vector of prices 𝑦𝑜𝑝𝑒𝑟  and subject to the constraint given by 

(14), we use the Lagrangian method. 

𝐿(𝑦, 𝜆) = ∑ (𝑦𝑖
𝑜𝑝𝑒𝑟

𝑥𝑖 − 𝛼𝑖(𝑦𝑜𝑝𝑒𝑟)2) −
𝑁

𝑖=1
𝜆 [∑ 𝑥𝑖 − 𝐴𝑅

𝑁

𝑖=1
] 

λ is the Lagrangian multiplier. Let us now calculate the derivative form of 𝐿 with respect to 𝑦𝑖
𝑜𝑝𝑒𝑟

, and 

let it equal to zero: 

𝜕𝐿(𝑦,𝜆)

𝜕𝑦
𝑖
𝑜𝑝𝑒𝑟 = 0                                                                                                                                             (16) 

In the same manner, we also calculate the derivative form of 𝐿 with respect to λ: 

𝜕𝐿(𝑦,𝜆)

𝜕𝜆
= 0                                                                                                                                             (17) 

Solving the equation system composed by (16) and (17) leads to get: 

∑ 𝑥𝑖 =
𝑁

𝑖=1
∑ 2𝛼𝑖𝑦𝑜𝑝𝑒𝑟 = 𝐴𝑅

𝑁

𝑖=1
 

In which we deduce: 

∑ 𝛼𝑖𝑦
𝑜𝑝𝑒𝑟 = 𝐴𝑅/2𝑁

𝑖=1                                                                                                                            (18) 

We now extract the 𝑖𝑡ℎterm from (18), and we get: 

𝛼𝑖𝑦𝑖
𝑜𝑝𝑒𝑟

+ ∑ 𝛼𝑢𝑦𝑢
𝑜𝑝𝑒𝑟𝑁

𝑢=1,𝑢≠𝑖 =
𝐴𝑅

2
                                                                                                        (19) 

By summing (19) over all customers𝑖 = 1, … , 𝑁, we obtain: 

∑ 𝛼𝑖𝑦𝑜𝑝𝑒𝑟 + ∑ ∑ 𝛼𝑢𝑦𝑢
𝑜𝑝𝑒𝑟

= ∑
𝐴𝑅

2

𝑁

𝑖=1

𝑁

𝑢=1,𝑢≠𝑖

𝑁

𝑖=1

=
𝐴𝑅

2
𝑁

𝑁

𝑖=1
    

Which is equivalent to write: 

𝐴𝑅

2
+ 𝑁 (∑ 𝛼𝑢

𝑁

𝑢=1,𝑢≠𝑖
𝑦𝑢

𝑜𝑝𝑒𝑟
) =

𝐴𝑅

2
𝑁 

this is also equivalent to: 

𝑁 (∑ 𝛼𝑢

𝑁

𝑢=1,𝑢≠𝑖
𝑦𝑢

𝑜𝑝𝑒𝑟
) =

𝐴𝑅

2
(𝑁 − 1) 

this leads to deduce: 

(∑ 𝛼𝑢

𝑁

𝑢=1,𝑢≠𝑖
𝑦𝑢

𝑜𝑝𝑒𝑟
) =

𝑁 − 1

𝑁

𝐴𝑅

2
= (1 −

1

𝑁
)

𝐴𝑅

2
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then, (19) can be rewritten as follows: 

𝛼𝑖𝑦𝑖
𝑜𝑝𝑒𝑟

+ (1 −
1

𝑁
)

𝐴𝑅

2
=

𝐴𝑅

2
 

it is not difficult to conclude that: 

𝛼𝑖𝑦𝑖
𝑜𝑝𝑒𝑟

=
𝐴𝑅

2𝑁
 

Thus, we can see that we reach similar result for the optimal consumer price: 

(𝑦𝑖
𝑜𝑝𝑒𝑟

)
∗

=
𝐴𝑅

2𝑁𝛼𝑖

 

and for an optimal consumption or energy demand of a consumer i: 

(𝑥𝑖)∗ =
2𝐴𝑖𝛼𝑖𝑁

𝐴𝑅
 

The Nash Equilibrium Point in case of dynamic price and multiple clients is given by the couple: 

((𝑥𝑖)∗; (𝑦𝑖
𝑜𝑝𝑒𝑟

)
∗
) = (

2𝐴𝑖𝛼𝑖𝑁

𝐴𝑅
; 

𝐴𝑅

2𝑁𝛼𝑖

) 

6. Summary and Future Work 

The Smart Grid context introduces a large number of interesting problems and optimizations to solve. 

Assuming the presence of a network infrastructure, precise real-time metering devices and prediction 

systems we have presented a game theory approach to encourage end customers to consume green energy 

as it is produced. The algorithm is based on the presence of two players: the operator and the customer 

and introduces a dynamic pricing strategy. The objective of the players is to reduce the energy cost and to 

have some fairness in green energy distribution. We show that such a system can have a Nash equilibrium 

point. A simple algorithm is described to reach this point. 

We want to extend this work to more complex games with more actors, e.g. multiple providers 

scenarios where the consumer is also playing the operator role (e.g. it sails his too much produced 

renewable energy to his neighbors). We also plan to integrate this work into the prediction tools and 

distributed metering simulators we have already developed. These extension works will in particular be 

conducted in the context of SEAS ITEA3 project [5]. 

Acknowledgements 

This research work has been carried out in the framework of the project Smart City Energy Analytics 

at Technological Research Institute SystemX, and therefore granted with public funds within the scope of 

the French Program "Investissements d'Avenir". 

References 

[1] VELCRI-Project. Financed by the National Energy Agency ADEME. (2010). [Online]. Available: 

http://www2.ademe.fr/servlet/doc?id=75098n&view=standard 

[2] Tushar W, Yuen C, Chai B, Smith DB, Poor H. Feasibility of using discriminate pricing schemes for energy trading in smart 

grid. In: Proc. Global Communications Conference, Dec. 2014:3138–3144. 

[3] Taft J. The intelligent power grid-The energy and utilities project. Innovating for Transformation, 2006:74-76. 

[4] Venayagamoorthy GK. Potentials and promises of computational intelligence for smart grids. In: Proc. IEEE Power and 

Energy Society, Calgary, Canada, 2009. 

[5] ITEA3. Smart Energy Aware Systems. (2014). Project led by gdf-suez and started in February 2014 for a 3 years duration. 

M. Hadji et al.: A game theory approach with dynamic pricing to optimize smart grid operation                            197



  

[Online]. Available: https://itea3.org/project/seas.html 

[6] Jose AA, Pahwa A. Economic evaluation of small wind generation ownership under different electricity pricing scenarios. In: 

Proc. of IEEE NAPS, 2010. 

[7] Wang J, Biviji MA, Wang W. Lessons learned from smart grid enabled pricing programs. In: Proc. IEEE PECi, 2011:1–7. 

[8] Faruqui A, Hledik R. The impact of dynamic pricing on westar energy. Smart Grid and Energy Storage Roundtable, Topeka, 

Kansas, 2009. 

[9] Spees K, Lave L. Impacts of responsive load in pjm: load shifting and real time pricing. IAEE The Energy Journal, 2008:101–

112. 

[10] Ibars C, Navarro M, Giupponi L. Distributed demand management in smart grid with a congestion game. In: Proc. IEEE 

Smart Grid Comm., 2010. 

[11] Mohsenian-Rad A, Wong V, Jatskevich J, Schober J. Autonomous demand-side management based on game-theoretic energy 

consumption scheduling for the future smart grid. IEEE Transaction on Smart Grid, 2010:320-331. 

[12] Bu S, Yu FR, Liu PX. Dynamic pricing for demand side management in the smart grid. In Proc. IEEE/ACM Green Com., 

2011:47–51. 

[13] Fudenberg D, Tirrol J. Game theory. In: Cambridge, MA: MIT Press; 1991. 

[14] Ormond JM. Utility-based intelligent network selection in beyond 3g systems. In: Proc. IEEE ICC, 2006. 

[15] Cocchi R, Shenker S, Estrin D, Zhang L. Pricing in computer networks: motivation, formulation, and example. IEEE/ACM 

Transactions on Networking, Dec. 1993; 1(6):614–627. 

[16] Maggi L, Avrachenkov K, Cottatellucci L. Stochastic games for cooperative network routing and epidemic spread. In: Proc. 

ICC 2011 Workshop on Game Theory and Resource Allocation for 4G, 2011:1–5. 

[17] TRAN PN. Modeles de decision pour la sélection d’interface et l’association flux/interface pour les terminaux mobiles multi 

interfaces. 2010. 

[18] Daniel. (2014). Unpredictable wind energy - The danish dilemma. [Online]. Available: 

http://wilfriedheck.tripod.com/danish.htm 

[19] Matlab. (2015). [Online]. Available: http://fr.mathworks.com/ 

 

 

198 International Journal of Smart Grid and Clean Energy, vol. 4, no. 3, July 2015

https://itea3.org/project/seas.html
http://wilfriedheck.tripod.com/danish.htm
http://fr.mathworks.com/

