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Abstract 

Smart grids are considered to replace traditional grids by adopting advanced technologies. Peak amounts would be an 

important future problem because of new devices such as electric cars, smart home appliances and the others with 

high-energy consumptions. In a smart grid environment, these problems should be eliminated. As a solution a 

management and control mechanism is required. In a smart grid, demand-side management or demand response 

system aims to obtain an evenly distributed consumption. In this study, a demand response model is proposed. This 

model uses game-theoretical methodologies with a dynamic pricing scheme. In an intelligent system of consumers 

and the utility company, energy prices are dynamic. Lowering prices may motivate consumers to shift some of their 

daily optional consumption. The motivation for saving on energy bills can be used with game-theoretical 

methodologies to construct a solution that eliminates peak amounts. 
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1. Introduction 

In the next decade, smart grids are expected to replace the traditional grids. Advancing information 

technologies enable grids to transmit power in a more efficient way than they do before. Grids are also 

starting to have new adaptation mechanisms to frequently changing demand and supply conditions. A 

smart grid should have a demand-side management or a demand response model to construct such an 

efficient and robust system. 

Consumers are now using new devices such as electric cars and appliances for smart homes. As a 

result, the behavior of electrical energy consumption has been dramatically changing. In a grid, the 

preferred consumption type is homogenously distributed consumption over a 24-hour period with no or 

minimum peak amounts. The main motivation of a demand response model is to achieve this goal, and it 

can be described as controlling energy consumption thru metering devices of consumers. 

There are previous studies in the literature, which proposed solutions to make grids more efficient and 

robust. Some of these studies used agent-based computational methods to model a demand-side 

management [1], [2]. In several studies, demand-side management was modelled by using game-

theoretical methodologies [3]–[7]. Most of the demand-side management methods used in the literature 

especially focused on computational techniques rather than modelling the consumer behavior in a more 

lifelike way, where this study separates from previous studies. The proposed model adds flexibility by 

using Bayesian game theory and by taking account of unpredictable consumer behaviors. 

Smart metering devices are required to compose a demand response model. These devices can be used 

in decentralized and centralized environments to obtain a bidirectional communication between 

consumers and the utility. This communication helps utility to collect the usage data, which is essential 

for all of the demand response models. Smart metering devices are another research area, but they are 
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essential to understand how a demand response model works. For metering device communication, 

different technologies can be used such as cellular networks, sensor networks, ZigBee network, cognitive 

radio network or McWill network [8]. These technologies should provide fast, reliable and secure 

communication; otherwise it would be impossible to add intelligence to smart grids. 

In this paper, a demand response model is proposed. This model uses game-theoretical methodologies 

and a dynamic pricing scheme to achieve an evenly distributed daily load in the smart grid. The rest of the 

paper is organized as follows. Proposed demand response model and dynamic pricing scheme are 

explained in the second section of the paper. In the third section, the problem definition is given by using 

game-theoretical methodologies. Simulation results are given in the fourth section. Finally, the conclusion 

is given in the fifth section. 

2. Proposed Model  

In many countries same institutions transmit and distribute the electricity; there is also a tendency for 

privatization of these institutions [3]. These institutions have a common goal to cut back on costs, 

efficiently integrate new technologies and to develop environmental friendly green technologies. Further, 

market liberalization and changing regulations lead countries to redefine their electric energy systems [9]. 

Reducing peak amounts is an important goal for these future electric systems. Either consumption should 

be lowered or it should be intelligently distributed to reduce peak amounts. An efficient demand response 

model encourages consumers to reschedule some of their appliances.  

2.1. Smart grids 

Smart grids differ from the traditional grids by having advanced sensors and smart metering devices, 

and they differ by using communication, information, and control technologies [10]. A smart grid is more 

efficient, reliable, renewable, reconfigurable and secure than a traditional grid. It has strategies to 

response any events that occur at any point of the grid from power generation to transmission and from 

distribution to consumption [11]. 

In a smart grid, demand response is an important mechanism for reliability and efficiency. A 

bidirectional communication mechanism is required to construct a demand response model. This 

communication mechanism can be either between the consumers or between the consumers and the utility 

company. As a result, smart metering devices are in the heart of demand response models, and they are 

one of the key components in a smart grid. These metering devices should comply with necessary 

specifications to provide the required bidirectional communication.  

2.2. Game theory 

Game theory analyzes strategic behaviors of rational agents [12]. In the game theory, there is a finite 

set of players who determine their strategy to achieve a common goal. With every new step taken, 

strategies of the players will change. Finally, there will be a point where none of the players can change 

its strategy; this point is the Nash Equilibrium. Reaching this common point will satisfy goals of every 

player in the system. Nash Equilibrium produces an optimal solution for a problem. 

Game theory is a universal methodology, which applied in various fields from the economy to the 

biology. Advanced technologies and services of a smart grid make it benefits from game-theoretical 

methodologies about its design and analysis [13]. 

In the game theory, games are classified as non-cooperative and cooperative games [14]. In the non-

cooperative games, players determine their strategies for conflicting interests. A communication 

mechanism may exist, but it doesn’t provide information about strategies of other players. There are two 

types of non-cooperative games. First one is known as static games, and the other one is dynamic games. 

Dynamic games differ by enabling players to act more than once in a game. On the contrary, in static 

games players act only once. In cooperative games, players communicate and negotiate with each other to 

maximize their benefits. 
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Congestion game is a specific game type, where there are two sets; one is for the players, and the other 

one is for the resources. For every player in the game, there is a separate finite strategy set. Those strategy 

sets are used to allocate the resources. Since resource allocation has a cost, every player tries to find its 

best strategy to minimize that cost. At the end of the game, combining all individual strategy sets will 

form a solution set. In a Bayesian game, there is incomplete information such that one player does not 

have the knowledge of other player’s payoffs.  

2.3. Demand response model 

A demand response model can receive data from the consumers and also can send a response to them. 

Consumers should communicate with each other to achieve a common goal. Thus, there should be a 

bidirectional communication mechanism between the consumers and between the consumers and the 

utility. The utility updates its prices according to grid load data calculated from consumption; it also 

provides recent price information to its consumers. 

In Fig. 1, a demand response model is given. In this model, there are n consumers, which are denoted 

as C1…Cn, and there is a utility company, which is denoted as UC. In the figure, bidirectional arrows 

show the data exchange between the consumers and the utility company. The energy price data and the 

consumption data are transmitted. 

 
Fig. 1. Demand response model. 

An effective demand response model is beneficial for both consumers and the utility company. In the 

proposed model, there is a common goal of the utility company and the consumers; this goal is to reduce 

peak amounts in the grid by evenly distributing the daily load. The game-theoretical methodology with a 

dynamic pricing scheme may generate equilibrium because utility company’s pricing strategy combined 

with the strategies of the consumers who would try to lower their bills. 

2.4. Pricing scheme 

There are numerous pricing schemes applied to smart grids such as flat pricing, peak load pricing and 

dynamic pricing [15]. In flat pricing, the utility company determines a fixed price for all time intervals. 

This fixed price is determined in the beginning, and it won’t change during the operation. Peak load 

pricing differs by determining different pricing for different time intervals. Contrarily, in dynamic pricing 

there is no price fixing and the price is calculated separately for each time interval. The main advantage of 

dynamic pricing is a company delays its pricing decision until the market conditions are known so that the 

company can adjust prices, according to its strategy. 

In the proposed model, dynamic price calculation requires data of consumption amount for each time 

interval. There should be a penalty for hours with high consumption, and hours with low consumption 

should have a reward as well. Rewards have limitations to prevent a pricing, which is lower than the 

production cost. Penalties also shouldn’t produce an unacceptable very high pricing. Set of proper prices 

is defined to prevent these undesirable outcomes. 
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Let ]ρ,[ρρ maxmin  is the set of the proper prices that are determined by the utility company. This 

pricing function is lower and upper bounded. Between these bounds there exists a one-to-one relationship. 

For the proposed model, dynamic pricing scheme takes the following form: 
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where,  is the set of prices, r   is the price determined by the utility company, L is the load values of 

the utility, A is a positive constant and   is the pricing strategy of the utility company. The price is 

increasing function of loads. The utility company can scale the rewards and the penalties with the pricing 

strategy parameter. 

3. Problem Definition  

In this section, the problem definition is given mathematically by using game-theoretical 

methodologies. In a demand response model, the main problem is defined as balancing the load in the 

most suitable way. The problem is not reducing energy usage but balancing the load, and this can be 

achieved by intelligently shifting energy consumption. 

Let there are n players (consumers) in a smart grid. For each of the player, total daily power 

consumption is divided into a total of m τ-minutes intervals. In this situation, the daily power 

consumption of the player i is defined with a vector, 

],,...,[ 1 m

iii ttt  ni 1  (2) 

where, for every player i its ti vector is divided into a total of m τ-minutes intervals. The utility company 

is accepted as a player so that the total number of players becomes n+1. Let strategy set of each player i is 

given by the following equation, 

,iS 11  ni  (3) 

where, Si is the strategy set of player i and Sn+1 is the strategy set of the utility company. Strategies of all 

players are collected in the set N as, 
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For each player i, related goal function is to minimize 
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where, k

it is the power consumption of i
th

 player in the k
th

 time interval. In real life situations, some 

consumers may not bother with shifting their loads. As a result, in the simulation environment a selection 

criterion is used to distinguish such consumers. This selection criterion also helps the model to escape 

from Avalanche effects. Avalanche effects are peaks caused by demand response models in which all 

consumers use electricity at the same time when unit pricing is low. 

For the utility company, the goal will have an instant load closer to the average load. The average load 

is defined as follows. 
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Finally, to address the incomplete information in utility company’s cost function the game is described 

as a Bayesian game, 

),,,,,,( iiii PSTANG  11  ni  (7) 

where, N is the finite set of players, Ω is the finite set of states of nature, Ai denotes the action set, Ti 

denotes the type of player i, Si denotes i
th

 player’s strategy set and finally Pi denotes the common 

probability function of player i. 

We assume that a consumer’s cost function has the form Ωi(c), where c is a common cost for all 

consumers. The objective of each consumer is to consume while the pricing is low. Payoff function set is 

defined as U = {u1, u2, … un+1} where ui is defined as, 

RTTTAAAu nni   121121 ......:  (8) 

For every time step, some consumers dynamically react to the pricing information, which is calculated 

and transmitted by the utility company. We apply the Bayesian game model to every step with 

dynamically adjusted new unit prices. This multi-step Bayesian game is continuously used to update 

beliefs of consumers. 

4. Simulation Results  

A simulation environment was constructed to test the proposed demand response model. We evaluate 

the proposed model in terms of load and game steps. In the simulation environment, there are 2000 

consumers and each of them has two types of consuming demand. First consuming demand type is 

demands that cannot be shifted. For example, consumers do not shift their lighting consumption to 

another time interval or they do not turn off their television sets to lower their bills. The second type is 

demands that can be shifted. A consumer may charge an electric car in another time interval unless there 

isn’t any emergency situation, or they may postpone operating their dishwashers. 

In the environment, consumers use appliances that are given in Table 1. The consuming behavior of 

the virtual population is calculated according to this data. In the simulation environment, each household 

is a player of the game, and they behave independently. Furthermore, each household has randomly 

selected appliances and for every appliance in a household, demands for usage are randomly determined. 

Table 1. Appliances in the simulation environment 

Appliance Type Consumption 

(kWh) 

Average Working 

Hour(s) 

Necessity (Yes/No) 

Refrigerator 0.15 24 Yes 

Dish Washer 2.00 2 No 

Washing Machine 2.50 2 No 
Oven 2.00 2 No 

Electric Car (EV) 9.70 2 No 

Television 0.20 10 Yes 
Iron 1.80 1 No 

Kettle 1.50 1 No 

Satellite Receiver 0.05 10 Yes 
Telephone 0.01 24 Yes 

Desktop Computer 0.45 6 No 

Air Conditioner 2.00 10 Yes 
Lighting 0.40 7 Yes 

 

In the Fig. 2 total consumption values over the time intervals are given. This figure displays data 

before and after the application of demand response model. It is assumed that utility company’s pricing 

strategy parameter is selected from the interval (0, 1] and this parameter remains fixed during the 

simulation. For each time interval, dynamic pricing value is calculated with the formula that is given in 

(1).  The parameter τ is selected as 30 and grid loads are calculated separately for each time interval. 
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Fig. 2. Total consumption values over time after applying demand response (DR) model. 

As it is seen in the figure, after applying the demand response model consumers shifted some of their 

optional consuming demands to the most suitable time intervals according to their game strategies. 

Additionally, it can be observed that peak load decreased with demand response. 

Fig. 3 shows total consumption values after the demand response model was applied. This figure 

illustrates consumption values over time for a different number of Bayesian game steps. Learning process 

is an internal part of a game theoretic model. As shown in the figure, increasing the number of Bayesian 

game steps produces better results. This result is expected since every game step is a part of a learning 

process, and it helps consumers to improve their belief sets. 

  
Fig. 3. Demand response with different number of Bayesian game steps. 

5. Conclusion  

In this study, a demand response model with a dynamic pricing scheme is proposed. The proposed 

model uses game-theoretical methodologies and applies a dynamic pricing scheme. From the utility 

company’s point of view, demand response model helps reducing peak amounts in a grid. Preventing 

peaks provide crucial benefits such as decreasing operation costs and lowering carbon emission levels. 

From the consumers’ point of view, a demand response model helps them to reduce their bills by only 

shifting some of their optional consumption. For these different goals, a problem is defined by using 

Bayesian game, and a model is constructed. 

Simulation results demonstrate that the proposed model evenly distributes the daily load in smart grid 

and prevents Avalanche effects. It is also observed that increasing Bayesian game steps improve the 

learning process.  
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