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Abstract 

The corrosive volume of available data in electric power systems motivates the adoption of data mining techniques in 
the emerging field of power system data analytics. The mainstream of data mining algorithm applied to power system, 
decision tree (DT), also named as classification and regression tree (CART), has gained increasing interests because 
of its high performance in terms of computational efficiency, uncertainty manageability, and interpretability. The 
fundamental knowledge of CART algorithm is introduced in this paper, followed by an overview of a variety of DT 
applications to power systems for better interfacing power systems with data analytics. 
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1. Introduction 

With the development of information and communication techniques, conventional power grids are 

being modernized, with improved efficiency, reliability, economics and sustainability of generation and 

distribution of electricity. Currently, power system data are not only being gathered by centralized 

monitoring systems, e.g. WAMS, SCADA/EMS systems for online operation, control and protection, but 

also by a large number of distributed devices e.g. smart-meters, fault recorders etc., for further 

management and analysis. In addition, data from simulations, carried out by power system analysts are 

also playing an important role in the environment of power system planning and operating. Therefore, 

modern power systems are enriched with huge quantity of online and historical data, ready for extraction, 

processing, analysis and exploration. 

Data mining techniques, involving methods of artificial intelligence, machine learning and statistics, 

are computational processes of discovering the useful information of data patterns from large data sets. 

Among many data mining techniques, especially those with “white box” nature, such as artificial neural 

network, support vector machine etc., DT algorithm has gained increasing interests because it not only 

provides the insight information of data sets with low computational burden, but also reveals the 

principles learnt by DTs for further interpretation. Besides, under the background that there are more and 

more uncertain factors in power systems, DT algorithm is capable of managing these uncertainties by 

statistical methods to increase the reliability. 

This paper introduces the fundamental knowledge of DT and its extended algorithms, presents state-of-

the-art of DT algorithms applied to power systems, and then gives many options of software to implement 

DT based algorithms. 

2. Principles of Decision Trees 

Decision tree, also named as classification and regression tree (CART), is a decision support tool 

which uses a binary tree-like graph or model to reveal the hidden relationship between inputs and outputs. 

It was first developed by Breiman et al. in the 1980s [1] and was firstly introduced into the field of power 

systems by Wehenkel et al. in 1989 [2]-[5]. 
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Fig. 1 shows the architecture of data mining applications to power system. Sufficient amount of data 

are collected from power system which is used as the learning database. Data mining engine plays a 

significant role to find out important patterns that are hidden in the learning database followed by the 

evaluation and interpretation of the created model. Thereafter, online data is obtained from the system and 

used to predict the classification or the target value of the output. Finally, actions of control or protection 

are suggested or automatically taken if necessary. 
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Fig. 1. Architecture of data mining in power systems.    Fig. 2. A simple (a) classification tree and (b) regression tree. 

As shown in Fig. 2, given a set of attributes (i.e. A, B, C,…) as input predictors of case n, the target 

value (i.e. Discrete or Continuous) of the case can be predicted by dropping the case downward along a 

path of “if-then” questions from the root node to a terminal node of a DT. The DT is classification tree 

(CT) if the target is a discrete class, while it is regression tree (RT) if the target is a continuous value. The 

vector of predictors can be composed of both numerical variables (e.g. A) and categorical variables (e.g. 

B). Variables are called numerical variables if their measurements are real numbers, while called 

categorical variable if it takes values from a finite set which may not have any natural ordering. 

2.1. Accuracy estimation of decision tree 

A database composed of a number of cases is necessary for training the DTs. Each case in the 

databases consists of a vector of predictors and a target, the predictors usually serve as the input attributes, 

and the target is the output. The training process of the DT is to iteratively split the dataset into 2 subsets. 

In CT, and the fundamental idea to select each splitting rules is such that to make the cases in each of the 

divided subset are as pure as possible. While in RT, the splitting rules are selected to minimize the overall 

absolute deviation or square error. Commonly used indices are used to estimate the cost of 

misclassification of a CT and the cost of error of a RT respectively, as defined in (1) and (2). 
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where N
TS

 is the number of test cases, c(i|j) is the cost of misclassifying a class j case as a class i case, c(k) 

is the cost of prediction error in node k of the RT. 

Usually, there are 3 methods of internal test to estimate the accuracy of a DT. The first, overoptimistic, 

is the resubstitution estimates, which is computed using the same data used to train the DT. The second is 

the test sample estimates. The cases in the database are randomly divided into a learning set (LS) and test 

set (TS). The LS is used to train the DT, while the TS is used to evaluate the accuracy of the created DT. 

The third, cross-validation, is parsimonious with data and preferred for databases with small size. The 

cases in the database L are randomly divided to V subsets with equal size (i.e. L1, L2, …, LV), For every 

iteration i, L-Li is the LS, and Li is TS. The accuracy is the average estimate of all V iterations. 

2.2. Splitting rules of decision tree 

Impurity functions are adopted to find optimal splits of a CT, such as GINI index in (3), in which p(j|t) 

is the prior probability of class j case given that the case is in node t. If split δ of a node t is predicted to 
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send a proportion Lp  of the data cases to left node tL and proportion Rp  to right node tR, the decrease of 

impurity is defined by ΔI(δ, t), as given in (4). The optimal selection of splitting rules for a node can be 

calculated by repeated attempts to maximize the decrease of impurity ΔI(δ, t) so as to minimize the 

impurity of the whole tree, as defined in (5), in which Tt are terminal nodes of the CT. Similarly, the 

splitting rules of a RT are based on iterative attempts to maximize the decrease of error of RT, so (3)~(5) 

for CT have their counterparts for RT, as defined in (6)~(8). 
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2.3. Pruning of decision tree to the right size 

The optimal DT is selected by the criterion of accuracy while dropping the cases in TS to the DTs. Too 

large a tree will have a higher misclassification rate or error than the right sized one due to the over-fitting 

problem, so the pruning process is needed to delete some branches or some nodes of an over-fitted tree to 

the right size one. The misclassification cost defined in (1) and the error cost in (2) are used to evaluate 

the accuracy of CT and RT respectively, so the optimal DT is the subtree with minimum misclassification 

rate or error rate selected from the all pruned sub-trees, as defined in (9) for CT and (10) for RT. 
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3. Applications of Decision Tree in Power Systems 

3.1. Security assessment 

Among the many other applications of DT in power systems, security assessment is the most versatile 

[2]. With the help of DT, the information regarding scenarios of power system (e.g. operating conditions, 

contingencies, topologies, voltage and power etc.) can be expressed as a model to assess and predict the 

security states of scenarios from a vector of input attributes. 

DT is first introduced to assess the transient stability of a simple electric power system [3]. Later, 

transient stability assessment is carried out for a real power system, i.e. EDF System in France, by 

enhancing the reliability of DTs for seen and unseen cases [4]. In [5], new methods are proposed to 

reduce the probability of missed alarms by adjusting the prior probabilities and misclassification costs of 

unstable cases, and also to reduce the probability of false alarms by incremental tree development scheme. 

To evaluate the overall transient stability assessment for a large-scale power system, multi-contingency 

tree is first presented in a more compact and easier fashion compared with single-contingency trees.  

In [6], DT is first used to assess the security of a median island power system (Lemnos Island system 

in Greece) with high penetration of renewable energy, taking the wind speed and solar radiation as 

candidate attributes. In [7], a DT based method for the optimal dispatch of primary reserve services 

considering security margins as constraints is tested on Crete power system in Greece. 
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DT is first adopted for online dynamic security assessment (DSA) for a large scale power system 

(Entergy system in USA) in a practical approach [8]. This scheme builds and periodically updates DTs 

offline to decide critical attributes as security indicators. Then DTs provide online DSA and operation 

guidelines based on real-time measurements from WAMS. The security of current scenario is voted by a 

whole path of DTs instead of just by terminal nodes to improve the robustness of DTs. In [9], DT was 

used especially for voltage security assessment for AEP system in USA based on the information of the 

past and forecast 24-h ahead operating conditions. Hourly updated DTs by including newly predicted 

system conditions, and multiple optimal DTs, corrective DTs are proposed for robustness improvement. 

In [10], a real-time security assessment tool was proposed to evaluate four post-contingency security 

issues of SRP in USA, i.e. voltage magnitude, thermal limit, voltage security and transient stability issues. 

CT can also be combined with other algorithms for power system security assessment, e.g. fuzzy logic 

[11], mathematical morphology [12]. In [11], a fuzzy rule-based DT is proposed for rapid stability 

assessment. The voltage and rotor angle curves are proceed in both time and frequency domain to extract 

the area-wise and system-wise features for DT training. Then DTs can accurately predict the security of 

Hydro-Quebec system for decision making as early as 1sec or 2sec after fault clearing. 

3.2. Preventive and corrective control 

Continuously growing demand for electricity has forced modern power systems to operate closer to 

secure operating limits. Also, the increasing penetration of large scale renewable energy may impact 

power grids by bringing more uncertainties to grid operations. DT is a suitable tool to provide emergency 

control of power system in terms of its high efficiency, interpretability and uncertainty manageability. 

In [13], DT is used to determine the reserves of Crete Island system in Greece. Then online preventive 

control is suggested with optimization on the cost of load shedding and the cost of spinning reserves. In 

[14], the application of DT for online steady state security assessment of Hellenic system in Greece is 

presented. The DTs extract the relevant information regarding line loading and voltage level and express 

them in terms of controllable values, i.e. generator bus voltage, active power generation and transformer 

taps. Preventive and corrective control strategies are suggested with respect to these controllable values. 

In [15], integral square generator angle (ISGA) index is proposed to judge the severity of 

contingencies for transient stability assessment. DT is trained by a large number of time-domain 

simulations of contingencies to give guidelines of ISGA, so as to trigger one-shot event-based corrective 

control to stabilize the transient events at any time intervals of 1sec after the disturbance. In [16], one-shot 

response-based control is developed in response to the loss of synchronism detection. 

In [17] and [18], DTs are used for preventive control (i.e. generation rescheduling) and for corrective 

control (i.e. load shedding) by determining the dynamic security regions. Then the preventive control and 

corrective control are optimized in terms of the fuel cost and the amount of load to be shed, respectively. 

In [19], a new methodology that using DTs in tandem is proposed for Danish power system with large 

scale of renewables and distributed generations, one DT about measurable variables is employed for DSA 

to identify potential security issues, and the other DT about controllable variables provides online 

decision support on preventive control strategies against those issues. In addition, DT can also be used for 

controlled islanding [20], [21] and load shedding [22] and so on. 

3.3. Protection 

Some early explorations use the DTs to trigger the protection in real time, using a short window of 

post-fault curves (rotor angle, speed and acceleration [23] and R-Rdot relay [24], [25] in progress to train 

a DT model, which can predict whether system insecurity/instability or even system collapse is going to 

occur before it really happens. Some uncertain factors in the network composed of fault duration, fault 

location, system operating conditions and network topology are considered to test the robustness of the 

created DTs, but the reliability still can not meet the standard of industrial application. In [26], the 

sensitivity of prediction accuracy is demonstrated for online transient stability assessment. It is found that 

the prediction accuracy is increasing when the power system is getting more close to the system collapse. 
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In [27], a methodology is proposed to reduce the likelihood of hidden failures and potential cascading 

failures by adjusting the security/dependability of adaptive protections. Aided with WAMS, the scheme 

identifies prevailing system conditions. When the system is in “safe” state, a bias toward “dependability” 

is desired; when the system is in “stressed” state, the protection settings is altered in favour of “security”. 

3.4. Forecasting, estimation, and identification 

CT and RT usually combine with unsupervised learning techniques to forecast the load consumption, 

to estimate the variables, and to identify the parameters in power systems. 

In [28], Figueiredo et al. deals with the load forecast issue of EDP (Portuguese Distribution Company). 

Firstly, unsupervised learning (clustering) is used to obtain partitions of historical data into a set of 

consumer classes, then supervised learning (DT) is adopted to describe each class by rule-based 

classifications and create a DT model to assign consumers to the existing classes. The objective is to find 

the relevant knowledge about how and when consumers use electricity. 

In [29], DT is used to estimate the line flows and bus voltage following an outage event in an efficient 

manner. The approach has been successfully tested by Taiwan system in China. In [30], a methodology is 

proposed for southern Spanish generation company to estimate the daily load patterns and their associated 

probability of non-connected unit. DT is used to recognize the load pattern so as to approximately predict 

when its generating units are connected to alleviate the network constraints. 

RT can also combine with other algorithms. In [31], a new method based on a hybrid technology of 

optimal regression tree and an artificial neural network is proposed to discover the rules in short-term 

load forecasting. Regression tree contributes to the clustering of input data, while ANN is used to predict 

the 1-step-ahead load. The conventional CART regards the midpoint of two learning data as a split value. 

Therefore, CART misclassifies the data close to the splitting values. Therefore, Mori et al. combines 

fuzzy logic with regression tree to predict the short-term load, in which two fuzzy membership functions 

were assigned to express the left and right nodes so as to increase the accuracy of prediction [32].  

3.5. Fault diagnosis 

DT is one of the strong tools in power system fault diagnosis because of its ability to process and 

analyze the time-series signal. In [33], DT is used in fault diagnosis of power distribution lines, both 

discrete attributes (operating states) and continuous attributes (voltage and current) are included in the 

predictors in order to deal with the variance of fault resistance and the noise of measurement. In [34], a 

decision tree-based method is proposed to detect High Impedance Fault in distribution feeders using 

attributes of RMS and harmonics of current and voltage so as to reduce sampling rate of protection relays. 

4. Extended Algorithms and Software 

DT is based on a database, which is definitely significant for the quality and practicality of the DT 

model. There is a tradeoff between the information content in the database and the computational cost of 

creating a large database, so many new methods are proposed to maximize database information content 

and minimize computation burden. In [35], Lartin super-cube sampling is first used for efficiently 

identifying the security boundary region. In [36], bisection methods together with importance sampling 

are used to efficiently prepare the hourly database for online DSA. 

As mentioned before, the algorithm of CART has advantages in terms of computational efficiency, 

uncertainty manageability, interpretability, as well as the ability to handle missing values [37], but it also 

has weakness, for instance, piece-wise sharp decision boundaries, affected by data interaction, missing the 

effect of weak attributes. Therefore, some extended algorithms, such as Fuzzy DT [38], ANN DT [39], 

[40] Random Forest [41-44], Tree Net [45] etc. are invented for strengthen the original CART algorithm. 

There are two classes of software that provides DT based algorithms. One is commercialized software, 

e.g. SPM [46], SSPS [47], Elefant [48], Lush [49]. The other is open-source software e.g. RapidMiner 

[50], Shogun [51], Spider [52], Plearn [53], PyML [54], Weka [55] and MATLAB/Statistic. 
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5. Conclusion 

The paper highlights the importance of power systems data analytics and their potential applications. 

Firstly, it introduces the fundamental of decision tree algorithm, followed by the latest state-of-the-art of 

decision tree algorithms applied to power systems. Moreover, advantages and weakness of decision tree 

algorithm are discussed. Finally, many choices of software to implement DT algorithms are suggested. 
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