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Abstract 

The massive integration of variable and unpredictable Renewable Energy Sources (RES) and new types of load 

consumptions increases the dynamic and uncertain nature of the electricity grid. Emerging interests have focused on 

improving the monitoring capabilities of network operators so that they can have accurate insight into a network’s 

status at the right moment and predict its future trends. Though state estimation is crucial for this purpose to trigger 

control functions, it has been used mainly for steady-state analysis. The need for dynamic state estimation (DSE), 

however, is increasing for real-time control and operation. This paper addresses the important role of DSE over 

conventional static-state estimation in this new distribution network context. Computational burden mitigates the 

state-of-the-art utilizations of DSE in real large-scale networks, although DSE was introduced several decades ago. 

This paper the unscented Kalman filter (UKF) to alleviate computational burden with DSE. The UKF-based approach 

does not use a linearization procedure and thus outperforms the conventional Extended Kalman Filter based approach 

to cope with non-linear models. The performance of the UKF method is investigated with a simulation of an 18-bus 

distribution network on the real-time digital simulator (RTDS) platform. A distribution network with considerable 

integration of renewable energy production is used to evaluate the UKF-based DSE approach under different types of 

events.  

 
Keywords: Dynamic state estimation, extended Kalman filter, unscented Kalman filter, renewable energy sources, 
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1. Introduction 

Considering the massive integration of variable and unpredictable Renewable Energy Sources (RES) 

and new types of load consumptions, e.g., heat pumps and electric vehicles, the electricity distribution 

grid is becoming increasingly complex and dynamic. Real-time control and operation have begun to play 

an important role in reducing the consequences of intermittency and uncertainty in this new distribution 

network context. These functions require advanced techniques to not only estimate a system’s state 

variables but also to predict its future trends [1]. By improving the grid’s monitoring capabilities, control 

actions will be triggered in real-time, thus improving system reliability and stability.  

Static state estimation (SSE) provides a snapshot of a power system’s operating point reflected by state 

variables, e.g., bus voltage magnitudes and phase angles, based on a set of measurements, such as voltage 

magnitudes, power flows, and power injections. SSE was first introduced by Schweppe and Wildes in 

1970 based on the weighted least square (WLS) [2]. In an effort to reduce computational burden, several 

hierarchical estimation methods were then proposed, as summarized in [3]. Distributed approaches for 

SSE also have gained significant interest given their ability to comply with state variables from different 
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network areas on different voltage levels [4]. Different distributed algorithms for SSE were proposed 

based on the way in which the network areas were defined. In [5], Ebrahimian and Baldick introduced a 

robust algorithm based on linear augmented Lagrangians for overlapping bus boundaries. Conejo et al. 

presented a straightforward and effective algorithm for overlapping tie-line boundaries in [6]. Using 

multi-agent system (MAS) technology, Nordman and Lehtonen proposed a new approach for distributed 

SSE in [7]. This idea was extended with a completely decentralized SSE method in [8]. More details on 

static state estimation can be found in [9]. 

SSE has been utilized widely in the past due to its reliable capability and reasonable accuracy in quasi-

static situations. For online and real-time applications, SSE must be repeated in a small enough ∆t time 

step (sampling time), which yields undesirable properties [10]. This kind of succession static estimator, 

also called a tracking estimator algorithm, can provide information only about static steady-state variables. 

With the highly dynamic nature of today’s smart grids, this traditional approach may not be suitable for 

the advanced real-time control functions desired for complex and uncertain electric power operation. 

Dynamic state estimation (DSE) with a relative simplified model for tracking state vectors was also 

introduced early in 1970 by Debs and Larson in [10]. Leite da Silva et al. extended the approach with a 

focus on forecasting and filtering the state vectors using exponential smoothing and least-square 

estimation [11]. Since then, DSE has been known as an alternative state estimation approach that can 

predict state vectors one time step ahead based on a priori knowledge and that can be corrected with the 

subsequent measurement sets. Depending on the techniques, estimated DSE variables can be either static 

state variables, e.g., bus voltage magnitudes and phase angles, or dynamic state variables, e.g., speed 

variables of generators. 

In general, the DSE model is based on the extended Kalman filtering (EKF) theory, which includes the 

three main steps of parameter identification, state forecasting/prediction, and state filtering/correction. 

However, EKF must recursively collect time-historic data in order to update the covariance vectors and 

treat the heavy computation matrices. These steps mitigate the application of EKF in real large-scale 

power systems. 

Recent applications of unscented transformation techniques have significantly improved the 

performance of Kalman filter-based estimation for DSE. Valverde and Terzija showed the advantage of 

the unscented Kalman filter (UKF) over the EKF and WLS methods [12]. In [13], the ability of UKF to 

address dynamic variables, e.g., speed variables and internal generator voltages, was presented with a 

simplified simulation that included a small number of generators. Other research focusing on estimating 

the generator variables was introduced in [14]. Recent publications have shown that UKF has advantages 

in terms of robustness, speed of converge, and identification of bad data compared with the classical 

EKF-based method. 

A UKF-based DSE method for a distribution network with RESs is introduced in this paper. Due to the 

limitation of measurement devices in the distribution network, the developed method needs to yield 

reasonable predicted and estimated state variables with much less measurement data than others designed 

for the transmission system. A detailed model for UKF-based DSE is presented that includes the three 

main steps of parameter identification, state prediction, and state correction. The paper focuses on the 

advanced utilization of UKF and adapts this advanced technique across all three steps.  

2. Dynamic State Estimation 

A dynamic model that monitors system operating conditions more completely than static models can be 

represented by a process equation (1) and a measurement equation (2) as follows: 

 1 ,k k kk  x f x q  (1) 

( , )k k kk y h x r  (2) 

where k is the time sample; xk is the state vector; qk represents modelling uncertainties corresponding to a 

white Gaussian noise with zero mean and covariance matrix Qk; yk is the measurement vector; h is a set 
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of nonlinear load-flow functions for the current network configuration; and rk is a Gaussian error vector 

with zero mean and diagonal covariance matrix Rk. 

In this dynamic state-space model, equation (1) can be interpreted as the memory of the system state 

time evolution, and equation (2) is considered its refreshment. Such memory will be responsible for the 

forecasting capability of the model. Depending on the availability of measurements, the model can be 

adequate or parsimonious. 

The basic idea of a state estimation function is to determine the most likely system state vector x for 

either the static steady-state or dynamic state of the system:  

, , , ,
T

i i inject i i    x θ V P ,  

based on the quantities measured and acquired by remote terminal units (RTUs), presented as: 

, , , ,
T

flow flow inject inject
   y V P Q P Q .   

In general, DSE is achieved by implementing three steps, i.e., parameter identification, state prediction 

(forecasting), and state correction (filtering), as illustrated in Fig. 1. In the first step, the parameters of the 

transition function  , kkf x are identified. This will be associated with the processing noise qk to predict a 

step-ahead state variable vector 1kx . Through the measurement function 1( , )kk h x and measurement 

data (yk+1; rk,), the state vector is corrected as 1
ˆ

kx , which will be a fine-grained estimation for use at the 

control center. While SSE based on WLS provides only a snapshot of the current state vector, i.e., xk at a 

certain time k, DSE aims not only to provide time-varying solutions but also to predict the system state 

one step ahead. This is in line with the idea of one-step-ahead prediction recently discussed by 

Venayagamoorthy et al. in [1], which is crucial for enabling real-time operation and control functions. 

The following sections explain in detail the DSE process using the conventional EKF method and an 

advanced UKF method. 

 
Fig. 1. Dynamic state estimation process 

2.1. EKF-based DSE 

As the most popular approach to handling the complexity of the above model, the EKF-based method 

simplifies (1) by liberalizing the transit function, assuming the quasi steady-state behavior of the 

considered system, as follows: 

1k k k k k   x F x g q  (3) 

where matrix Fk represents the speed of transition between states, and vector gk is associated with the 

behavior trends of the state trajectory.  

DSE depends heavily on the forecasting technique adopted in [15]. Different forecasting techniques 

can be applied to estimate Fk, gk, and Qk. The Kalman filter in [16], exponential smoothing in [11], and 

artificial neural networks (ANN) in [17]–[18] have been utilized successfully under this context.  

 Step 1 – Parameter identification 

Parameter identification aims to estimate the values of Fk, gk, and Qk that are used for the state 

prediction step. Considering an application of Holt’s linear exponential smoothing technique, the values 
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of Fk and gk can be obtained as follows: 

 1k k k  F I  (4) 

    1 11 1 1k k k k k k k kx   

      g a b  (5) 

where I is the identity matrix, and all associated parameters can be calculated based on a priori 

knowledge. More details appear in [11]. Despite its rather simple implementation, this technique can offer 

very short-term predictions (few minutes ahead). However, this linearization step is more suited to quasi 

steady-state models and may not be suitable for significant dynamic situations. 

 Step 2 – State prediction (forecasting) 

At this stage, state vector 
1kx  is predicted with its covariance matrix  using the following 

equations: 

  (6) 

 
 (7) 

while ˆ kxP  is the covariance matrix to estimate ˆ
kx  at time k. 

State prediction is an interesting area for the exploitation of computational intelligence (CI). ANN as a 

typical application of CI has been studied extensively in [17]-[18]. The prediction model can be improved 

by integrating load forecasting, which was proposed as a forecasting-aided state estimation (FASE) 

concept in [15]. 

 Step 3 – State correction (filtering) 

By updating a new set of measurements 1kz , the predicted state vector 1kx  can be corrected (filtered), 

yielding a new state vector 1
ˆ

kx  with its error covariance
1ˆ kxP . An objective function for the correcting 

process, at time k + 1, is presented as follows: 

 
(8) 

where the time index k+1 has been omitted for simplification, and R is the variance vector of the 

measurement errors. 

Similar to WLS estimation for SSE, minimizing  xJ  yields an iterative solution, i.e., iterated 

extended Kalman filter, as follows: 

   (9) 

The gain matrix 1kK  is computed using the following equation: 

1
1 1 1

1

T T

k x


  


   K H R H P H R  (10) 

where
 

1k

x

x







h
H  is the Jacobian matrix. With respect to 1

ˆ
kx , its error covariance matrix 

1ˆ kxP is 

computed as follows: 

1

1
1 1

ˆ .
k

T

x


    xP H R H P

 
(11) 

2.2. UKF-based DSE 

Basically, EKF is an extension of Kalman filtering that uses a linearization procedure to solve 

nonlinear models. Though this approach has been considered feasible, it provides only an approximation 

of the optimal nonlinear estimation. It causes biased estimates and erroneous covariance [12]. 

1kxP

1
ˆ

k k k k  x F x g

1 ˆ .
k k

T

k k k
 x xP F P F Q

         1 1T T

xx x x x x x x            J y h R y h P

 1 1 1 1 1
ˆ .k k k k kx        x x K y h
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Furthermore, calculating the Jacobian matrix Hk+1 for each time step could slow down the DSE process. 

UKF-based DSE improves the process because it can handle the non-linear nature of DSE. Based on 

the unscented transformation (UT) theory, the approach propagates a statistical distribution of the state 

via non-linear equations to provide better results. The three main steps of DSE will be adjusted according 

to the UT technique as follows: 

 Step 1 – Parameter identification 

In addition to identifying Fk and gk, this stage includes sigma point calculation. From the current state 

vector ˆ
kx and its covariance ˆ kxP , UT propagates a statistical distribution to form a matrix Xk of 2N + 1 

sigma vectors, as follows: 

   ˆ ˆ
ˆ ˆ

k kk k k kN N     
 x xX x x P x P   (12) 

where  2 N n      is a scaling parameter with spreading constant  ( 410 1   ) and secondary 

scaling  (usually, 3 n   ). Propagating sigma points around the state vector ensures the non-linear 

nature of the transition function. 

 Step 2 – State prediction (forecasting) 

From the sets of sigma points in (12), the prediction step in (5) is adjusted as follows: 

 (13) 

 (14) 

 
 (15) 

with weighting factors given by 

0 ;mW
N








2

0 1 ;cW
N


 


   

   

1
.

2

m c

k kW W
N 

 


 

   

  

  

 

 1 1
ˆ ˆi i

k k Y h X
 (17) 

2

1 1
0

ˆˆ
N

m i

k i k
i

W 


y Y
  (18) 

  
1

2

ˆ 1 1
0

ˆ ˆˆ ˆ
k

N T
c i i

i k k i k k i k
i

W
    



   yP Y y Y y R
 

(19) 

 

(20) 

Then, the gain matrix 1kK is calculated as: 

 
 (21) 

The correction of the state vector and its covariance are calculated by the following equations: 

1

i i

k k k k  X F X g

2

1
0

N
m i

k i k
i

W


x X

  
1

2

1 1
0

.
k

N T
c i i

i k k i k k i k
i

W
    



   xP X x X x Q

 Step 3 – State correction (filtering)

From predicted state vector 1kx and its covariance 1kM , a new set of sigma points is generated as: 

   
1 11 1 1 1

ˆ
k kk k k kN N 
    

    
 x xX x x P x P (16)

to be propagated through the following measurement-update equations:

  
1 1

2

ˆ 1 1
0

ˆ ˆ
k k

N T
c i i

i k k i k k i
i

W
     



  x yP X x Y y

1 1 1

1
ˆ ˆ1 k k kk   



  x y yK P P
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  (22) 

 
(23) 

3. Test system and results 

The performance of the UKF was investigated via a real-time simulation on an 18-bus distribution 

network, as shown in Fig. 2. This test network was modified from the IEEE 34-bus test network [19] with 

the following simplifications and adjustments [20]: 

 Approximately one-third of the distributed loads was placed at the end of the line and two-thirds at 

one-fourth of the way from the source end; 

 Only the three main phase sections were included; the unbalance phase loads were summed up at the 

root;  

 The low-voltage (0.4 kV) network segment was represented by an equivalent load; 

 Constant PQ loads were represented by dynamic load models. Constant Z loads were represented by 

passive resistors and inductors. Constant I loads were neglected; 

 Considerable renewable energy production from a 2MW wind turbine (WT) and 55kW solar 

photovoltaic (PV) was integrated. 

The network model was built on the Real-Time Digital Simulation (RTDS) platform. Network sate 

before event occurring is summarized in Table 1. To perform the slow dynamics of the system, 50 time-

sample intervals with a time resolution of 0.08 sec. were obtained from the RTDS platform. Voltage 

magnitude values were measured at bus 1 and bus 18, while active and reactive power flows were 

measured at one end of each network segment. Active and reactive power injections were measured at 

buses to which three-phase loads were connected. To achieve realistic measurement data, the values of 

bus voltages, power flows, and power injections from the simulation included interference from random 

additive Gaussian noise: N(0;0.15%). The steady state of the network before the event was as follows: 

Table 1. Network state pre-event 

Parameter Unit Value 

Substation bus voltage kV 26.143 

Active power from the public grid MW 0.550 

Reactive power from the public grid MVAr 0.290 
Active power from DFIG unit MW 1.575 

Reactive power from DFIG unit MVAr -0.464 

Active power from PV unit kW 0.0502 
Reactive power from PV unit MVAr 0.0003 

 
Fig. 2. Single-line diagram of the test network modified from the IEEE 34-bus network. Note that placements of 

distributed loads will create additional buses in some line sessions.    

 1 1 1 1 1
ˆ ˆ

k k k k k      x x K y y

1 1 1ˆ 1 1.k k k

T

k k    x x yP P K P K
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To verify the performance of UKF-based DSE, two events were studied in the test network. These 

events created dynamic changes in the network that the proposed method is expected to capture 

accurately. Detailed results of these two studied cases appear in the following sections. 

3.1. Case 1 –Low power production from WT and PV, together with voltage reduction  

At t = 1 s, the wind speed was reduced from 12.6 m/s to 4.4 m/s, while the irradiation of solar PV 

decreased from 1029 W/m
2
 to 225 W/m

2
. This situation was based on one weather sample collected from 

the real-time power and intelligent systems laboratory’s weather station at Clemson, South Carolina, US. 

The active (in MW) and reactive power (in MVAr) production of the PV and WT units are shown in Fig. 

3 along with time (in seconds) simulation. The situation became more equable with a reduction of the bus 

voltage at the distribution substation (bus 1) from 26.143 kV to 22.41 kV, the lowest threshold value (-

10%).  
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Fig. 3. Reduction of renewable power production due to sudden changes of wind speed and solar irradiation.     
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Fig. 4. Comparison of the true bus angle and voltage magnitude value with predicted and estimated values at bus 5 – 
Case 1.     

This event was captured by UKF-based DSE with an example of estimated voltage magnitude (in rms 

kV) and bus angle (in radian) together with predicted values at bus 5, as shown in Fig. 4. After some 

initial time samples, the state vector was predicted quite close to the true value during steady-state 

operating points. Even with the occurrence of a significant event, this prediction method yielded good 

results and was able to track new operating points. Fig. 4 also shows how the corrected state vector 

outperformed the predicted state vector, especially in transient periods of the system.  

3.2. Case 2 – Occurrence of an external fault 

In this case, an external fault occurred at time t = 1.2 s that caused a serious dip in the voltage at the 

substation from 26.143 kV to 13.057 kV, as shown in Fig. 5. The fault was isolated at t = 2.376 s, thus 

voltage profile along the feeder was restored. Comparison of the true bus angle (in radian) and voltage 
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magnitude (in rms kV) value with predicted and estimated values at bus 5 is shown in Fig. 5. As the 

figure illustrates, the UKF-based DSE method performed effectively with the dynamic change of the 

network state.  
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Fig. 5. Comparison of the true bus angle and voltage magnitude value with predicted and estimated values at bus 5 – 

Case 2.     

4.   Conclusions 

This paper has addressed the important role of DSE in estimating accurate state variables at the right 

moment and predicting their trends steps ahead for real-time control and operation. A UKF-based DSE 

has been introduced to tackle the dynamic nature of the distribution network with increasing RES 

penetration. The proposed approach requires less computational effort and performs better than the EKF-

based method for non-linear models such as DSE. The  performance of UKF-based DSE was verified via 

simulation on an 18-bus distribution test network with considerable wind and solar power integration. 

Simulation results from two studied events showed the feasibility of the UKF in estimating and predicting 

the dynamic state of the distribution network. In the simulation, the predicted values were able to track 

the network’s state one step ahead. Depending on the sampling time interval, this prediction can be used 

to provide advance information for secure operation of the distribution grid.  

In future work, a combination of the UKF with Recurrent Neural Networks (RNNs) might be 

considered to improve DSE. More specifically, the UKF can be used for online training of recurrent 

neural networks. 
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