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Abstract 

This study proposes an efficient approach for the model of photovoltaic systems power output by employing 
evolutionary programming algorithm schemes. The PV system power output is primarily influenced by the weather, 
the solar irradiance and the module temperature. The EP algorithm is employed for adjusting the optimal value of the 
fill factor to achieve more accurate PV system (PV array model and PV inverter model) power output. A model of the 
PV systems can be established and the power outputted. To validate the developed PV system model, some measured 
data from two PV systems are utilized to make comparison with the proposed EP algorithm schemes. The modeling 
of the PV system is performed and the performance of our presented power output approach proves the effectiveness 
of the proposed method. More accurate results can be obtained by adjusting the fill factor parameter of the built 
model. 
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1. Introduction 

In the past decades, large-scale photovoltaic system has been worldwide in the developed countries. 
The advantages of employing the photovoltaic plant generate electricity including no production of 
pollutants during operation, silent, long lifetime and low maintenance. Besides, solar energy is abundant, 
free, clean and inexhaustible. Especially, the grid connected applications represent the fastest growth of 
the photovoltaic market. There is an important point that the PV output affects the power system stability. 
How way can more accurately predict the power output of the photovoltaic power plants, and industry 
and academia also focus on more forecasting effectively? Forecasting the power output of photovoltaic 
power plant research and applications can be classified into two categories: one is based on the intensity 
of solar irradiation prediction model. The solar irradiation model, being established according to the local 
weather history data, is the predicted value of the solar irradiation. However, it considers the model of the 
inverter. Finally, the PV system output can be predicted, such as [1]-[3], [6],[7], [10]-[12]. The model is 
dependent on the detailed meteorological data. While we want to require more accurate forecasting results, 
the model is more complex to be required the amount of the history of the weather data and more data 
types. It makes the prediction process be very cumbersome and not conducive to the realization of the 
actual situation. 

The goal of another forecasting method is to predict the output of the PV power stations. The PV 
power stations and grid connected operation of photovoltaic panels, geographical location, environment 
and inverter systems have been identified by historical operating data for a reasonable statistical model 
predicting the PV system output power directly. It needs to eliminate a large number of the 
meteorological statistical process and twice complex modeling process or several times, so it can simplify 
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the prediction power output process. Under varying operating conditions, the objective of this paper is to 
pursue a model with acceptable precision estimating the actual performance of the PV system. 

Evolutionary programming [2],[3],[5] is a parallel and global search technique that take the concepts 
from evolution theory and natural genetics. EP search algorithms are quite robust and good at finding an 
acceptable solution in a large search space. No need for prior knowledge of the dynamics is assumed and 
no derivative or environment information is necessary. The only concern for EP is the quality of the 
solution produced by each parameter set. 

In this paper, we develop a method to power output of PV system based on EP algorithm. It is 
organized as the follows. In section II, we address the PV model dynamics, where a six parameters model 
is built up. Section III presents the designing process of the EP algorithm. In section IV, to validate the 
developed model, measured data from two PV systems in Taiwan are utilized to make comparison with 
the proposed EP schemes. Conclusions with discussions are given in section V. 

2. Photovoltaic System Modeling 

Some important electrical characteristics of a PV module are the short circuit current, the open circuit 
voltage, the fill factor and the maximum power output. Their functions depend on the solar irradiance 
intensity and the PV-module temperature. The six electrical characteristics are modelled as follows. 

2.1. Short circuit current 

The short circuit current 1scI  depends on the PV module temperature and solar irradiance. The 
equation of 1scI  for the PV module is written as follows [4], [5], [8], [11]: 

( ) ( )1 0 1 0 1 01sc scI I T T G Gα⎡ ⎤= × + − ×⎣ ⎦  (1) 

where 0scI  is the short circuit current of the PV module in the standard solar irradiance 0G . While the 
environment changes with the solar irradiance 1G , the short circuit current is 1scI . α  is the PV module 
electrical specification and it’s unit is A/°C. 

2.2. Open circuit voltage 

The main relationship of the open circuit voltage for module temperature is to follow the PV module 
electrical specification β , and the open circuit can be expressed as follow [4], [8], [11]: 

( )1 0 1 01oc ocV V T Tβ⎡ ⎤= × + −⎣ ⎦  (2) 

where the open circuit voltage at 1ocV  is to be expressed by the open circuit voltage under STC conditions 

0ocV . 

2.3.  Fill factor 

The fill factor is defined as 1 1mp mp oc scV I V I , where mpV  and mpI  represent the voltage and current at 
the maximum power point, respectively. It is defined as follow. 

1 1mp mp oc scFF V I V I= .   (3) 

2.4. Maximum power output 

The maximum power point on the I-V curve is to be produced by the cell. Although the voltage at any 
point on the graph can still be calculated by using P I V= × . Maximum power point occurs on the “knee” 
of the I-V curve. Since the fill factor determines the power output of the cell, the maximum power output 
relationship is given by: 
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max 1 1oc scP FF V I= × × . (4) 

2.5. Photovoltaic array 

The PV system is composed of a combination of photovoltaic modules. It is connected in series and in 
parallel PV modules and extended the voltage and current, respectively. If a matrix of the Ms×Mp PV 
modules is considered, the voltage and current scaling are given as follows: 

A p MI M I= ×   (5) 

A s MV M V= ×    (6) 

where AI  and AV  are the PV array current and voltage, respectively; MI  and MV  are the PV module 
current and voltage. From equations (3)-(6), the maximum power output of the PV array can be expressed 
by 

A A A A p S MP FF V I M M P= × × = × × ,  (7) 

where AP , MP  are the PV array and PV module power output, respectively. 

2.6. Photovoltaic system 

The PV array power generates the DC component output, so the PV inverter performs the conversion 
of the variable DC output of the PV modules into a utility frequency AC current that can be fed into the 
commercial electrical grid or used by a local, off-grid electrical network. Therefore, the conversion 
efficiency of the PV inverter will affect the AC component of output power. The maximum power output 
of the PV system can be expressed by 

S INV AP Pη= × .  (8) 

where INVη  is PV inverter efficiency. 
The structure of EP based on the output power of photovoltaic system is shown in the Fig. 2-1. 

0 10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

100

Load Factor (%)

E
ffi

ci
en

cy
 (

%
)

 
Fig. 2-1. Structure of EP based on the output power of photovoltaic system model. 

3. Evolutionary Programming Algorithm 

Evolutionary programming algorithm, which was first proposed by Fogel et al. [7], is a class of 
biologically inspired artificial intelligence search technique that can be applied to a variety of 
optimization tasks and problems. Basically a population of possible solutions is maintained, and this 
population evolves over a number of generations with “survival of the fittest” enabling the fitter members 
to breed with each other and replace less fitting members. The population strategy enables EP to search 
the near optimal solutions from various parts and directions within a search space simultaneously. 
Therefore, it can avoid converging to the local minimum or maximum points. The flowchart of EP 
procedure is shown in Fig. 3-1. 
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Fig. 3-1. The flowchart of EP algorithm. 
 

The proposed EP procedures are implemented as follows: 
Step 1. In the procedure of EP coding, we have adopted the binary type to code the population. We use 

a vector as a chromosome to present real values of the variables. The length of the vector depends on the 
precision of requirement. The mapping from a binary string [ ]0 1 1Np a a a −=  of N bits into a real 
number is as 

( )

1

0
min max min

2

2 1

N
i

i
i

N

a
FF FF FF FF

−

== + −
−

∑
 (9) 

where { }min maxFF FF FF∈  is the real value to be encoded, minFF  and maxFF  are the lower and upper 
bounds of the variables, respectively. 

Step 2. From quasi-random sequence (QRS) [3], we can generate chromosomes as the initial 
population [ ]0 1 1Na a a −  of each parameter of EP-based algorithm. Each chromosome is a binary 
vector of N bits. Then we can search for FF , which will create a 1N-dimensioal vector of representing 
the parameters. The fitness function of the system is defined as ISE, 

( ) ( )2
10

ft
i i errorJ p w P dt⎡ ⎤= ⎣ ⎦∫ . (10) 

where error measured forecastP P P≡ − . 
Step 3. Mutate initial population ip , 1, 2, ,i n= , double the population size from n to 2n, and create 

i np +  as follows: 

( )
( )

two-bits-complement of ,  if 
one-bit-complament of ,  if 

i i mean
i n

i i mean

p J p Jp p J p J+

⎧ ≥
= ⎨ <⎩

, 

where Jmean is the mean value of ISE performance of all Ji(pi) that is from Step 2, one bit complement of 
pi represents that we select one bit of pi randomly and take the complement of that bit, and two bits 
complement of pi is defined in a similar way. 

Step 4. Calculate the fitness score Ji(pi+n) for each pi+n, 1,2, ,i n= , and rank the fitness scores of 
Ji+n(pi+n), for the next generation in selecting n individuals, where their ISE performance belongs to the n 
smallest ones. 

Step 5. Repeat Step 3 until the best chromosome is not replaced in next ten generations. 
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4. Validation Results and Discussion 

4.1. System introduction 

The model of the PV power output is verified with measured data for the two photovoltaic systems. We 
decide the location of the Tong Feng Junior High School (TFJHS), Bai He Library (BHL), which have 
been build since the year 2007 and 2009, respectively. 

The PV system consists of 18 PV modules each of 175W and a SMA/SB3800 inverter in the TFJHS. 
The system described in Table 4-1 has more information. The BHL PV system is composed of 42 PV 
modules each of 120W. Table 4-2 has more detailed information in the BHL. Fig. 4-1 and Fig. 4-2 show 
the PV system installed in the TFJHS and BHL, respectively. 

Table 4-1. Information of the PV System for TFJHS 
Rated Capacity Angle Azimuth Structure System 3.15 kWp 23.5 degrees South 9 series 2 parallel 
Company/No. P maximum Voc Isc Module 
Sharp/NT-R5E3E 175 W 44.4 V 5.40 A 
Company/No. Input Voltage Output Power Output Voltage Inverter SMA/SB3800 200~400 V 3.8 kW 1φ2W AC 220V 

Table 4-2. Information of the PV system for BHL 
Rated Capacity Angle Azimuth Structure System 5.04 kWp 6 degrees South 21 series 2 parallel 
Company/No. P maximum Voc Isc Module Kyocera/KC120 120 W 21.5 V 7.45 A 
Company/No. Input Voltage Output Power Output Voltage Inverter SMA/SMC6000A 246~480 V 6 kW 1φ2W AC 220V 

 

    
Fig. 4-1. PV system installed in the TFJHS. Fig. 4-2. PV system installed in the BHL. 

4.2. Analysis of photovoltaic inverter performance 

The PV inverter is critical component in solar energy systems. The PV inverter can convert the direct 
current generated by PV system into alternating current.  The energy load factor ( LRe ) is PV array output 
power ( DCe )/PV inverter max DC input power ( _INV Me ). So that, the energy load factor can be expressed 
by 

_

DC
LR

INV M

e
e

e
=  (11) 

Fig. 4-3 shows the efficiency characteristics of the PV inverter installed in TFJHS. 

AC
INV

DC

e
e

η =  (12) 

where DCe  is PV array DC output power and ACe  is the PV system AC output power and INVη  is the PV 
inverter efficiency. 
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Fig. 4-3. Characteristic inverter efficiency curve by changing parameter of equation (13).  

Table 4-3. The coefficients of PV inverter efficiency characteristics 

Systems coefficients TFJHS BHL 
A 0.0650 0.0254 
B 1.0250 1.0298 
C 0.0070 0.0017 

 
To evaluate and analyze the performance of the PV inverter, as shown in Fig. 4-3, relationship 

between DC input power load factor and efficiency of the PV inverter is approximated by the following 
nonlinear regression [8],[9]: 

2
LR

INV
LR LR

e
A e B e C

η =
⋅ + ⋅ +

 (13) 

where INVη  is the estimated PV inverter efficiency, LRe  the measured DC input power load factor and A, 
B, C, are the regression coefficients of the nonlinear equation. The regression coefficient “A” dominates 
the horizontal part of the PV inverter efficiency curve of the slope. The regression coefficient “B” 
dominates the horizontal part of the PV inverter efficiency curve of the vertical height. The regression 
coefficient “C” dominates the PV inverter efficiency curve of the knee point. Fig. 4-3 is the characteristic 
inverter efficiency curve by changing parameter of equation (13). We can observe the curve to shift from 
basic black to red by changing in parameter “A”. The curve shifts from basic black to blue by changing in 
parameter “B”. In the same way, the curve shifts from basic black to green by changing in parameter “C”. 
Finally, the Table 4-3 shows the PV inverter model parameters for TFJHS and BHL experimental sites. 
Fig. 4-4 is TFJHS PV inverter efficiency of the actual measured value and the PV inverter modelling 
curve, where the yellow points are measured values, the pink line is modelling curve. It is obvious to see 
that we can get good modelling results. 
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Fig. 4-4. TFJHS PV inverter efficiency of the measured value and the PV inverter model curve. 
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4.3. Discussion 

The verification results consider two kinds of the weather conditions, the sunny and cloudy. We choose 
two experiment stations to be TFJHS and BHL. Fig. 4-5 to Fig. 4-6 are based on the TFJHS experiment 
station. Fig. 4-7 to Fig. 4-8 are based on the BHL experiment station. The comparison between measured 
(blue line) and simulated by EP algorithm (red line) power output is shown in Fig. 4-5 and Fig. 4-7. The 
scatter plots of the measured and simulated power output are compared with Fig. 4-6 and Fig. 4-8. 

4 6 8 10 12 14 16 18 20
0

1000

2000

3000

Time (Hour)

P
ow

er
 O

ut
pu

t (
W

)

Tong Feng Photovoltaic System Performance for Sunny Day

 

 

Simulated
Measured

4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

Time (Hour)

P
ow

er
 O

ut
pu

t (
W

)

Tong Feng Photovoltaic System Performance for Cloudy Day

 

 

Simulated
Measured

 
Fig. 4-5. Comparison between the measured and simulated power output at TFJHS. 
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Fig. 4-6. Correlation between the measured and simulated power output at TFJHS. 
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Fig. 4-7. Comparison between the measured and simulated power output at BHL. 
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Fig. 4-8. Correlation between the measured and simulated power output at BHL. 
 

The simulated power output is followed the trend of the measured data quite well in the Fig 4-5, and 
the simulated power output is followed the trend of the measured data quite well in the Fig 4-6. Fig. 4-6 
illustrates the correlation between simulated and measured power output in TFJHS experimental station. 
In Fig. 4-6, the results for the sunny and cloudy conditions show the low solar irradiance the measured 
and simulated power output can be found (200 W/m2 above) relatively high accuracy. Fig. 4-6 shows the 
measured and simulated values employing the coefficient of determination and R-square are 99.79% and 
99.59% in sunny and cloudy conditions respectively. 

The simulated power output of BHL experimental station is followed the trend of the measured data 
quite well in the Fig 4-8, and the simulated power output is followed the trend of the measured data quite 
well in the Fig 4-8. Fig. 4-8 illustrates the correlation between simulated and measured power output in 
BHL experimental station. In Fig. 4-8, the results for the sunny and cloudy conditions show the low solar 
irradiance the measured and simulated power output can be found (600 W/m2 and 300 W/m2 above for 
the sunny and cloudy conditions, respectively) relatively high accuracy. Fig. 4-8 shows the measured and 
simulated values employing the coefficient of determination and R-square are 99.08% and 99.62% in 
sunny and cloudy conditions respectively. 

The above result exploits a fact that our EP based PV power output forecasting techniques have quite 
well accuracy. More detailed data shown in Table 4-4 for experimental results. 

Table 4-4. The coefficient of determination for two experimental stations 

R2 TFJHS BHL 

Sunny 99.79% 99.08% 
Cloudy 99.59% 99.62% 

5. Conclusions 

The power output performance of the PV system is primarily influenced by the weather, the solar 
irradiance and the module temperature. This paper presents the photovoltaic system power output model 
based on EP algorithm method. More accurate power output results can be obtained by adjusting the FF 
parameter of the PV system model building. Numerical simulation results show that our proposed 
approach is effective and feasible in time under the same accuracy. The statistics of time increasing the 
amount can improve the modeling accuracy. Our EP based power output prediction results of 
photovoltaic system have clearly demonstrated that the R-square performance is very well. Finally, high 
coefficients of the determination R-square for two kinds weather conditions (sunny and cloudy day) 
demonstrate the good performance of the PV system power output model. 
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