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Abstract 

This paper investigates a hierarchical Automatic Generation Control (AGC) strategy for an islanded microgrid, 
including wind power, solar photovoltaic, micro turbines, small hydropower and energy storage devices. The upper 
AGC is for central scheduling. The bottom AGC is to optimize the allocation factors, expecting to meet the 
requirement of energy-saving generation dispatching (ESGD). Three different bottom controllers are presented. Two 
of them are designed based on reinforcement learning (RL) algorithm. In order to evaluate their control performance, 
another proportion-based (PROP) controller which has been put into practical application is also presented. Detailed 
dynamic models of distributed generations and loads are built to simulate the microgrid. System responses to wind 
turbine tripping and to large load disturbances are tested. The results indicate that the proposed strategy based on RL 
algorithm can not only achieve reliability and stability of microgrid in islanded mode, but also reduce fossil energy 
consumption. This approach is a possible candidate for future microgrid control approaches. 
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1. Introduction 

Nowadays, energy-saving generation dispatching (ESGD) has been intended to be implemented in 
China, expecting to establish a long-term mechanism to promote clean energy development by improving 
the existing mode of dispatching [1]. The principle is that renewable and clean power generation 
resources can get a priority access, and dispatch the fossil energy resources from low to high in turn 
according to the level of energy consumption and pollutant emissions.  

One of important features of smart grid is that the grid can accommodate to a wide variety of 
distributed low-carbon generations and storage options, achieving the coordinated control and optimal 
operation while minimizing operations and maintenance expenses [2], which is also central to the concept 
of microgrid. Traditional methods to design Automatic Generation Control (AGC) system is through 
system identification approach or engineering experience, whose application effect is limited because of 
uncertainties and time-varying operating conditions in modern power grid. 

In this paper, on the foundation of dynamic models of distributed power sources, a hierarchical AGC 
strategy is proposed for an islanded microgrid. The upper AGC is for central scheduling. The bottom 
AGC is to optimize the allocation factors, expecting to meet the requirement of ESGD. Three different 
bottom controllers are presented. Two of them are designed based on reinforcement learning algorithm, 
and the third one is a proportion (PROP) controller. The MATLAB/Simulink simulation results show that 
the proposed control system based on reinforcement learning owns satisfied dynamic performance, makes 
the islanded microgrid operate safely and stably, and especially achieves the goal of ESGD. 
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2. Reinforcement Learning 

A reinforcement learning problem is an optimal control problem where the controller is given a scalar 
reinforcement signal indicating how well it is performing. The reinforcement signal is a function of the 
state of the system being controlled and the control signals chosen by the controller. The goal is to 
maximize the expected total discounted reinforcement [3]. One-step Q-learning is a simple incremental 
algorithm developed from the theory of dynamic programming. The multi-step Q(λ)-learning, which is a 
new direct algorithm that extends the one-step Q-learning algorithm, propagates information rapidly to 
where it is important by “eligibility” trace, which may faster convergence of the algorithm [4]. 

3.  Distributed Generations Modeling 

3.1. Small hydro generation model 

Small hydro power is clean, distributed and renewable energy. Although their available capacity is 
limited, small hydro generating units can be considered as base load units in a microgrid whose capacity 
is relatively small. The model of small hydro generation developed in [5] is used in this paper. 

3.2. Photovoltaic generation model 

PV systems have two big problems that the efficiency of electric-power generation is very low, 
especially under low-irradiation states, and the amount of the electric power generated by solar arrays is 
always changing with weather conditions. A detailed model of PV generation was described in [6]. Power 
output of photovoltaic generation in a single day is shown in Fig. 1.  
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Fig.1. Daily power output of photovoltaic generations. 

3.3. Power output of wind generation considering tripping 

Recent years, because of lack of actual operating experience and wind farm design defects, wind 
turbine tripping accidents occur frequently in China. Taking that into consideration, simulation of power 
output of wind generation is shown in Fig.2. Wind turbines are tripped due to a system fault at t=52,000 s 
that means power output of wind generation is reduced to zero, which may lead to mismatch between 
load and generation in the microgrid. 
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Fig. 2. Power output of wind generation considering tripping. 
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3.4. MT generation model 

Micro turbine (MT) generation is one of the most attractive distributed generation units. This is 
because micro turbines operate with less vibration and low noise, exhibit very fast response to load 
variation, require low maintenance, and run on a variety of fuels [7]. The model of MT is taken from [8]. 

3.5. Energy storage devices model 

Energy storage devices are one of the main critical components to rely on for successful operation of a 
microgrid. Flywheels with enough power capacity are used in this paper. The detailed representation of a 
simulation model of flywheels was presented in [9].  

4.  Simulation Cases and Analysis 

4.1. Dispatch scheme 

Photovoltaic and wind power are important renewable sources whose major issue is the availability of 
their power is driven by weather, not the loads of the system, considered as non-dispatchable units. Power 
output intermittence of them and load fluctuation lead to non-planed instantaneous power in microgrid.  
Traditional dispatch scheme focuses on the stability and load tracking of the microgrid. However, taking 
ESGD into account, dispatch scheme will be different. Units of various kinds identify the energy-saving 
sorted order according to the following sequence: 1) wind and PV generation units; 2) small hydro 
generation units; 3) natural gas generation units (WT). A corresponding hierarchical AGC strategy is 
shown in Fig. 3. The upper AGC is for central scheduling. The bottom AGC for which further study will 
be made is to optimize the allocation factors.  

4.2. Bottom Q-controller design 

A. State and action space discretization 
The degree of state and action space discretization plays an important role to the AGC performance of 

Q-controller. The state variable 1u  of Q-controller which is also the output signal of the upper AGC is 
discretized to the following 6 levels: ( , 2]−∞ − , ( 2, 1.9]− − , ( 1.9,0]− , (0,1.9] , (1.9,2] (2, )+∞ .The control 
actions, namely the output of bottom AGC, are the dynamic allocation factors. The action space is 
discretized into 25 values equal to {0.04, 0.08, 0.12, …, 0.92, 0.96, 1}. 
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Fig. 3. Hierarchical AGC strategy for microgrid. 



 Lingxiao Gan et al.: Smart Scheduling Strategy for Islanded Microgrid Based on Reinforcement Learning Algorithm 125 

B. Reward function 
The control objective of the AGC scheme can be defined by the immediate reward function. ESGD is a 

multi-objective dynamic optimal problem. The primary objective is to regulate frequency to the specified 
nominal value by adjusting the output of selected generators. A secondary objective is energy 
conservation and environmental protection through allocating generations. In other words, the dispatch 
scheme always tries to minimize power output deviation and then makes the renewable and clean power 
sources used as much as possible. Based on that, a reward function is designed as follows:  
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where  
order- ( )P tΣ :central dispatch order, MW; G1( )P t : Power output of small hydro units, MW; 

G2 ( )P t : Power output of MT units, MW; 1( )tθ : Ratio of G1( )P t  to order- ( )P tΣ
, %; 

( )2 tθ : Ratio of G2 ( )P t  to order- ( )P tΣ , %; ,α 1,2 ,iβ = 1,2,3iγ = : weight coefficients. 
The goal of RL is to maximize the expected total discounted reinforcement. On one hand, microgrid 

frequency stability must be guaranteed first and then meet the requirement of ESGD, i.e., the deviation 
between load and generation should be minimized. According to that, a negative coefficient (–α) is set 
before the power deviation item. On the other hand, in order to encourage small hydro units to be the base 
load units, positive coefficients (+ 1,2iβ = ) are set before 1( )tθ . Since the WT have rapid adjustment ability, 

they are expected to participate in peak load regulation and positive incentive factors (+ 2iγ = ) are set 
before 2 ( )tθ .  

C. Simulation case  
Dynamic simulation of the microgrid is established using Matlab/Simulink and the controller is 

implemented as S-Function module. Power output of PV and wind power generations was previously 
described in Fig. 1 and Fig. 2, respectively. Load curve is periodic sine-wave load as shown in Fig.4.  
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Fig.4 Load curve. 

The simulation results are shown in Fig. 5. Normally, no experiences will be available in the initial 
stage for the RL driven controller to control the AGC system adequately. As a remedy, controllers should 
be scheduled to experience a series of trial-and-error procedures called “pre-learning stage”, which is a 
stochastic action exploration process. After that, the total power output precisely tracks the changing load 
except for some special moments, though wind turbine tripping accident happened. The frequency 
deviation is smaller than ±0.02 Hz except for the pre-learning stage, which is in the acceptable range. 
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(b) 

Fig.5. Power and frequency deviation with Q-controller. 

4.3. Bottom Q(λ)-controller design 

In order to compare the performance of Q-controller and Q(λ)-controller, the state and action space 
discretization and reward function are the same. As is depicted in Fig. 6, the pre-learning stage of Q(λ)-
controller is about 400 seconds, shorter than that of Q-controller. Similarly the power output follows 
precisely the changing load and the frequency deviation of microgrid is within ±0.02 Hz. 
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Fig. 6. Power and frequency deviation with Q(λ)-controller. 
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Fig. 7. Power and frequency deviation with PROP controller. 

4.4. Bottom PROP controller design 

PROP algorithm based on which allocation factors are fixed and proportional to adjustable capacity of 
each AGC unit, is used by NERI in their actual AGC system. Allocation factors of small hydro units and 
MT in this paper are 0.66 (UH) and 0.34 (UG), respectively. The simulation results are shown in Fig. 7. 

4.5. Performance comparison of three controllers 

The steady-state frequency deviations with three different controllers are less than ±0.02Hz. They all 
own good load following performance, but the convergence time of Q(λ)-learning algorithm is shorter 
than Q-learning algorithm. In terms of ESGD, an evaluation criterion is assumed that under the same 
conditions the more hydro power and less WT generation are scheduled, the better the energy 
conservation will be. Total power output of WT is shown in Table 1. Total power output with Q-
controller and Q(λ)- controller are more than 40% reduction than with PROP controller. 

Table 1. WT’s power output 

Controller Power output (kWh) Reduction (%) 
PROP 6807.60 0 
Q(λ) 4004.70 41.17 

Q 3921.30 42.40 

Considering the frequency stability of the microgrid, load following and energy conservation, Q(λ)-
controller with online learning and adaptive characteristics, is more effective and suitable to deal with 
strong randomness and ESGD issues of a microgrid.  

5.  Conclusions 

Taking ESGD into account, a hierarchical AGC strategy based on reinforcement learning algorithm is 
proposed, which can achieve multi-objective dynamic optimal allocation of a microgrid in islanded mode.  

RL algorithm is a typical stochastic optimal algorithm, applicable to AGC of power system which is a 
stochastic optimal decision-making problem, especially when systems contain distributed stochastic 
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power sources, for example PV and wind power. The controllers based on RL have excellent online 
learning abilities and can adapt well to the random changes in the operating environment, which improves 
the adaptability and robustness of the system. Moreover the proposed control system meets the 
requirement of ESGD. It is a possible candidate for future microgrid control approaches.  
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