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Abstract 

Real-time online monitoring system and its analytics system for substation equipment is an important element of 
smart grid technology. However, proposals to invest in real-time online monitoring system are often turned down by 
the decision-maker due to the lack of economic model which act as a qualifier that determines whether the investment 
is worthwhile for the company and nation. In this paper, by deploying risk quantification methodology, visualized 
through decision tree structures, we propose that the investment of a sophisticated system for substation monitoring is 
dependent on customer segment profile and the condition of equipment. We present several scenarios that depict our 
argument on this matter. 
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1. Introduction 

Many electricity utility companies are contemplating to install real-time monitoring system to monitor 
the condition of substation equipment as a part of the effort to enhance the reliability of substation 
equipments [1] and reduce monetary losses. This is due to the following reason – “it is common that 
imminent failures of substation equipment could not be detected in advance by using non-automated 
condition based maintenance regime, leading to undesired losses". The root-cause of undetected failures 
is the nature of the fault, which progresses faster than the pre-determined inspection interval. Thus, a real-
time condition monitoring system that continuously monitors substation equipments 24 hours a day is 
considered as more effective in detecting incipient fault compared to condition based monitoring (CBM) 
regime that monitor the equipment in a periodical manner (example: once in 3 months, once in a year and 
etc.). However, to know only the intangible [2] benefits on hand is somehow not sufficient because the 
decision-maker may require the quantification of the benefits to justify whether the investment in a 
particular location gives a return that is comparable to the cost of investment [3], [4]. 

In this paper, we applied the theory of risk analysis to compare the risk (expected loss) of non-real 
time monitoring methodology and the risk (expected loss) of real-time monitoring methodology. The 
benefit of real-time monitoring system is quantified as the difference between the risk of non real-time 
monitoring system and the risk of real-time monitoring system. Subsequently, we present some cases 
where the benefits of having a real-time monitoring system are dependent on two factors that are the 
condition of equipment and the customer profile of the electricity network supplied by the equipment.  

2. Risk Analysis by Using Decision Tree and Cost-Benefit Analysis 

Risk is constructed based on three elements (Si , Pi, Ei), where Si represents the ith scenario, Pi and Ei 
represent the probability and the consequence of the ith scenario. 
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Specifically, risk of equipment failure in the scenario when a real-time monitoring system is deployed 
in a substation, is defined as the equation below: 

( ) ( )RT RT RT loss lossR P E=  (1) 

where RRT is defined as risk given real time monitoring system, PRT(loss) is defined as the probability of 
losses given real time monitoring system, and ERT (loss) is defined as expected monetary value of loss 
due to undetected failure.  

In similar manner, risk of equipment failure in the scenario when non real-time monitoring system is 
deployed in a substation, is defined as the equation below: 

( ) ( )NRT NRT NRT loss  lossR P E=  (2) 

where RNRT is defined as risk without real time monitoring system, PNRT(loss) is defined as the probability 
of loss without real time monitoring system; and ENRT (loss) is defined as expected monetary value of 
losses due to undetected failure. 

2.1. Risk analysis by using decision tree 

In practice, the calculation of the probability of losses requires the information of the likelihood of 
several mutually exclusive events to happen that resulted in the eventual losses. The structure of a risk 
model can be more vividly illustrated by decision tree diagrams [5]-[7]. Fig. 1 illustrated the decision tree 
diagram of the risk associated with real-time monitoring system. 

 

Fig. 1. Decision tree for real-time monitoring system. 

As shown in the furthest right section of Fig. 1, the losses due to equipment failure are segmented into 
four types. The first loss segment is the value of load loss [8] which represents the losses incurred by 
customer. The second segment of losses is the value of energy not served, which represents the value of 
loss of sales of electricity to the customer. The third segment of losses is catastrophic loss, which is the 
cost of damage that is inflicted to the whole substation due to an accident. An example of a catastrophic 
loss is an explosion which causes damages to other equipments or substation. The fourth segment of 
losses is major loss, which is the damage contained within the failed equipment itself.  

The risk of real-time condition monitoring system can be quantified by  

RT (catastrophic loss)+ (major loss)+ (VOLL ENS)R αβγδ αβγε αβγ= +  (3) 

where α represent equipment failure probability, β represents probability of non detection by CBM 
regime, γ represents probability of non-detection by real time monitoring, δ represents the probability of 
catastrophic failure and ε represents the probability of major failure. In layman term, risk associated with 
real-time monitoring equipment is the product of the percentage of non-detection of equipment failure 
using real-time monitoring equipment and the losses associated to it.        
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Fig. 2. Risk of non-real time monitoring regime. 

The risk associated with non-real time monitoring system is shown in Fig. 2. The risk of non-real time 
monitoring regime can be quantified by using the equation below: 

NRT (catastrophic loss)+ (major loss)+ (VOLL+ENS)R αβδ αβε αβ=  (4) 

2.2. Benefit of real-time monitoring system 

From the calculation of risk in Eq. (3) and Eq. (4), the benefit of utilizing real-time monitoring system 
is the difference between RNRT and RRT, as given by the following equation: 

Benefit($/Year) (1 ) [ (catastrophic loss)+ (major loss)+(VOLL+ENS)]γ αβ δ ε= −  (5) 

2.3. Dependency on epistemic probability of equipment failure and value of load loss 

As shown in Eq. (5), the benefit associated with implementing real-time monitoring system varies 
linearly with the probability of equipment failure, probability of non-detection and the losses components.  

During the life-cycle of similar equipments in a substation, major loss and catastrophic loss remain 
constant. The probability of non-detection of failure is a random process, valued as a constant.  

However, the probability of equipment failure and VOLL vary equipment state of health and customer 
movement, respectively. Probability of equipment failure can be modeled from the existing non real-time 
condition monitoring regime data. In addition, the value of load loss (VOLL) varies when new customers 
move into the area or move out from the area. Thus, the benefit of installing a real-time monitoring 
system may vary significantly with respect to equipment condition and customer segment profile; and in 
the next sub-sections, we discuss about the probability of equipment failure and value of load loss 
quantification. 

A. Epistemic probability of failure model as a function of equipment condition parameter 
Probability can be expressed in term of aleatory probability or epistemic probability. Aleatory 

probability is derived from the frequentist approach, which uses the “frequency” of an event to occur as 
the basis of the probability mass. In condition based monitoring, an event of equipment failure is very rare 
such that it is quite difficult to construct a model of failure probability across the condition parameter by 
using the existing data. Thus, epistemic probability that does not follow strictly the “frequentist 
calculation” is more convenient to indicate a probable failure to occur. 

In this paper, a method that was described in [9], [10] is utilized to model the probability of failure 
with respect to equipment condition parameter. For the benefit of reader, the calculation method is 
restated in this paper. At each condition parameter value of equipment failure event, the probability 
assigned to failure event is calculated by using the following equation: 
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where Pjk(failure) is the probability assigned to proposition equipment failure at “Yj”th (where Yj is the 
measured value of “j”th condition parameter Yj = {0,.., yj, ..,Yj max}) and “k”th equipment failure; F(yjk) is 
the number of equipment which failed at yj value, and N(yjk) is the number of equipments which have not 
failed (including normal operating equipments and equipments with incipient fault condition) at yj ppm. 

From the equation above, several data of Pjk(failure) that corresponds to value of yjk were obtained and 
modeled as a cumulative Weibull function. The probability of equipment failure is calculated as   

(failure) 1 exp jy
P

λ

μ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
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where μ is the life characteristics and λ is the shape parameter. 

B. Value of load loss 
Value of load loss is defined as the aggregated value of customer outage cost across the whole range of 

customers in the power network. Basically, the VOLL ($/kWh) is segmented to three broad customer 
profile category which are 1) domestic customer, 2) commercial customer and 3) industrial customer. 
Within the broad customer segment, VOLL can be further segmented to a number of sub-categories; and 
for each sub-category, customer outage cost (VOLL) is a function of several factors, such as business 
type, time of the day and etc. A survey [8] was conducted to determine the customer outage cost across 
Malaysia for each sub-category. 

The VOLL of a broad customer segment is the composite of the VOLL of customer sub-category and 
weighted by the electricity consumption profile. As an example, the value of VOLL for broad industrial 
customer category is calculated by  
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where VOLLI is the value of load lost of broad industrial customer segment, VOLLIn is the value of load 
lost of “n”th industrial customer sub-category, kWh

nI is the electricity consumption of nth industrial 

customer sub-category and kWh I is the electricity consumption of broad industrial customer segment.  
In similar manner, the VOLL of a particular area is calculated, as stated in Equation (9) below: 

total total total
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 (9) 

where VOLLA is the cost of in a particular area “A”, D denotes domestic customer segment, C denotes 
commercial customer segment, kWhtotal denotes the total electricity consumed in  area “A”.  

We consider the VOLL of broad customer segment to simplify our calculation.  

3. Dependency of investment decision on customer profile and condition of equipment 

To decide whether the investment is worthy, the equipment life-span benefit of online monitoring 
system is compared with the life-span cost of investment in real-time monitoring system. 

3.1. Cost of investment in real-time online monitoring system 

Cost associated with investing in real time monitoring system is presented by the equation below: 
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RT LS   
Cost($/year)

C C
N
+

=  (10) 

where CRT denotes the initial real-time monitoring system, CLS denotes life span maintenance cost and 
“N” denotes the number of years of life-span monitoring equipment life-span. 

3.2. Significance of the customer segment profile and probability of equipment failure 

To describe the significance of customer profile and probability of equipment failure elements in the 
decision-making process, we investigated three scenarios; that are 1) domestic customer segment 
dominance scenario, (2) industrial customer segment dominance scenario and 3) domestic customer 
segment dominance with increased equipment probability of failure. 

The following hypothetical values are assigned to the elements involved in calculating the benefit of 
real time monitoring system, shown in Table 1. 

Table 1: Assigned hypothetical values 
No. Term Values 
1. Probability of equipment failure (α)  0.01 
3. Probability of non detection of non real-time monitoring (β) 0.7 
5. Probability of non detection of real-time monitoring (γ) 0.2 
6. Probability of catastrophic loss (δ) 0.2 
7. Probability of major loss (ε) 0.8 
8.  Equipment loading  10 MW 
9.  Major loss  $ 1,000,000 
10.  Catastrophic loss  $ 3,000,000 
11.  Outage duration  (Worst case scenario : Replacing equipment) 720 hours 
12.  Value of Load Loss Domestic Customer Segment (VOLLD ) $0.49/kWh 
13.  Value of Load Loss Commercial Customer Segment (VOLLC ) $9.59/kWh 
14.  Value of Load Loss Industrial Customer Segment (VOLLI ) $57.9/kWh 
15.  Electricity Tariff ($/MWh)  300 
16. Investment cost of online monitoring system (CRT) $1,000,000.00 
17. Maintenance cost of online monitoring system (CLS/N) $5,000/year 
18. Life Span of online monitoring system 20 years 

 
The outage duration is considered from the perspective of worst case scenario of time to replace failed 

equipment. Loss due to energy not serve is calculated as [electricity tariff]×[equipment loading]×[outage 
duration]. Value of load loss is calculated as [VOLL]×[equipment loading]×[outage duration]. The total 
cost of the online monitoring system for its entire life span is $1,100,000.00. Now, let us consider the 
scenarios:  
Scenario 1: Industrial customer segment dominance 

Assume the percentages of power consumed in industrial customer segment dominance area are as the 
following; 10% of power consumed by domestic customer, 20% of power consumed by commercial 
customer and 70% of power consumed by industrial customer. Using Eq. (5) and Eq. (9), the benefit of 
online monitoring system is around $1.7 million.  

Since the benefit of real-time monitoring system is greater than total cost of online monitoring system 
($1.1million), the cost-benefit computation prompts the decision-maker to install the monitoring system 
for this area. 
Scenario 2: Domestic customer segment dominance 

Assume the percentages of power consumed in domestic customer segment dominance area are as the 
following; 90% of power consumed by domestic customer, and 10% of power consumed by commercial 
customer. Using Eq. (5) and Eq. (9), the benefit of online monitoring system is around $70 thousands. 

Since the benefit of real-time monitoring system is less than the total cost of online monitoring system 
($1.1million), the computation prompts the decision–maker that there is insufficient incentive to install 
real-time monitoring system in this area. 
Scenario 3: Domestic customer segment dominance & higher equipment failure probability 
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Assume the percentages of power consumed in domestic customer segment dominance area are similar 
with Scenario 2, and from Eq. (7), we assume the probability of equipment failure increased to 0.2.  Using 
Eq. (5), the benefit of online monitoring system is obtained as $1.5 million. 

Since the benefit of real-time monitoring system is greater than total cost of online monitoring system, 
($1.1million) the computation prompts the decision-maker to install real-time monitoring system for this 
area. 

Through the calculation done in Section 3.1, the benefit of Scenario 1 is greater than the cost of the 
investment, thus it is feasible to invest in real-time online monitoring system for area with industrial 
customer dominance of that particular detail. On the other hand, the investment in real-time online 
monitoring system for domestic customer area dominance is only feasible when equipment failure 
probability has increased to a certain degree. 

The decision “GO” or “NO-GO” with the investment plan is governed by the following inequality. 
The decision-maker decides “GO” with the investment plan when Benefit>Cost and “NO-GO” when 
Cost>Benefit. Given the VOLL of broad customer segment remains constant, that is, the electricity 
supplied by the substation is continuously feed to the same customer profile; from the probability of 
equipment failure perspective, the probability mass that will prompt the decision-maker to make a “GO” 
decision is governed by the following inequality: 

RT LS  
(1 )( (catastrophic loss)+ (major loss)+(VOLL+ENS))

C C
N

α
β γ δ ε

+
>

−
 (11) 

The segmentation of investment decision w.r.t. probability of equipment failure is depicted as in Fig. 3. 
On the other hand, given the probability of equipment failure remains constant, from the customer 
segment profile perspective, the VOLL which will prompt the decision-maker to make a “GO” decision is 
governed by the following inequality: 

RT LSVOLL (catastrophic loss)+ (major loss)+ENS)
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Fig. 3. Segmentation of investment decision with respect to probability of equipment failure 

The segmentation of investment decision with respect to VOLL is illustrated as in Fig. 4. 

 
Fig. 4. Segmentation of investment decision with respect to VOLL. 
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Note that the scenario depicted in this section refer to situation where benefit due to reduction of major 
loss, catastrophic loss and energy not served is less than the capital cost and maintenance cost of the 
equipment, or mathematically, LS RT+(ENS)](1 ) [ (catastrophic loss)+ (major loss) CN Cγ αβ δ ε <− + . 

4. Limitation 

Other cost and benefit elements such as the benefit of delaying the replacement of equipment and the 
cost of degraded system operation will be considered in future work. Currently, we are lacking sufficient 
data to appropriate model those variables in this paper. The “time value of money” will also be introduced 
in future work. 

5. Conclusion 

In this paper, we have analyzed the dependency of real-time monitoring system investment decision on 
customer profile and probability of equipment failure. This is done through comparing the risk reduction 
benefit with the investment and maintenance cost of the monitoring system. To showcase the significance 
of those varying factors, three hypothetical scenarios were introduced. The mathematical limiting values 
of VOLL and failure probability that satisfy the investment decision constraints were presented. Finally, 
we reemphasized the importance to consider the two varying elements that are the customer profile and 
probability of equipment failure to effectively select the suitable situation and location to install the real-
time on-line monitoring system.  
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