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Abstract: This paper discusses the complex problem of measuring occupancy to better manage large 
buildings and their energy consumption profiles and explores ways that occupancy has been measured in 
the past. The paper then explores a novel way of measuring occupancy using a Doppler radar based 
occupancy sensor, TruePODS, to detect human presence, and the greater implications that this technology 
provides. As a proof of concept, six TruePODS modules were deployed in a single building on a university’s 
campus over a period of six months. This paper details this case study and the methods used to empirically 
collect occupancy data for energy management. This paper concludes with exploring why Doppler 
technology could provide the answer to creating a high-resolution smart occupancy sensor that would be 
necessary to meet local and global energy efficiency goals. 
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1. Introduction

The building sector is the largest consumer of electricity in the United States, and there are potential

improvements in occupancy detection that can drastically increase the energy efficiency of buildings. The 

focus of the paper is to explore energy saving strategies and insights obtained from the design and 

implementation of a network of high-resolution, Doppler radar based occupancy sensors that were used to 

collect data in a single building case study on the University of Hawai’i (UH) at Manoa’s campus. This paper 

begins by discussing the concepts of building occupancy resolution and accuracy and reviewing traditional 

occupancy detection methods. The Doppler radar occupancy sensors used in this study show marked 

improvements from existing occupancy estimation technologies, namely their ability to operate in real-time 

and to have high spatial resolution. Then, this paper outlines the pilot deployment of the system across three 

independent office spaces within the same building over a six-month period and analyzes opportunities for 

energy savings within the space. Additionally, this paper evaluates potential areas for further development 

with the data generated from this study and opportunities for increased capabilities of the high-resolution 

Doppler radar occupancy sensor network. 

2. Energy Efficiency in Buildings

A thorough understanding of occupants and their indoor environment is a key component towards

achieving new levels of energy efficiency of buildings. Recent studies have shown that the building sector 
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accounts for 41% of primary energy usage, and 74% electricity usage within the U.S. In addition, electricity 

demand in the buildings sector has more than doubled since 1980 [1]. Other studies estimate that the 

building sector accounts for 39% of energy-related CO2 emissions [2]. From these estimates, studies show 

that about half of the energy used in residential and commercial buildings is consumed by heating, 

ventilation and air-conditioning (HVAC), and the other half by lighting and appliances [3]. With a nearly 50% 

projected increase in global energy use by 2035, most of it from fossil fuels, efficient energy usage within 

buildings is becoming increasingly important [4]. 
 

To achieve substantial building energy efficiency, knowledge about the factors determining energy use 

must be gained. Oftentimes, there is a significant discrepancy between designed and real energy use in 

buildings. These discrepancies are poorly understood but are believed to do more with the role of human 

behaviour, and changes in human behaviour over time, than building design. The large variation in energy 

consumption for similar or identical buildings within similar locations can be explained by differences in 

human behavior [5]. Due to their substantial share of energy usage, there are many research areas that have 

suggested ways to analyze human behavior and capture unrealized energy savings within buildings. 

Primarily, occupancy information is a crucial component in detecting wasteful behaviors and implementing 

effective energy management plans. [6] High resolution temporal and spatial occupancy data coupled with 

adaptive building services form the basis for a successful energy management plan and offer considerable 

potential for energy reduction [7], [8], [9], [10]. Energy reduction occurs by analyzing robust indoor 

occupancy data and using it to facilitate efficient heating, ventilation, and air conditioning (HVAC) control, 

lighting adjustments, and other building services to achieve both occupancy comfort and energy efficiency 

[11]. Reports from U.S. Department of Energy [11] and the American Council for an Energy-Efficient 

Economy [12] have come to the conclusion that commercial buildings alone may reduce their energy 

consumption by 20% to 30% through an implementation of a small number of energy efficiency strategies 

and continuous commissioning practices [13]. 

3. Background 

Traditionally, a building’s occupancy is defined as whether the building has people in it or not. This 

definition of occupancy is inadequate and does not enable the comparison of more sophisticated occupancy 

sensing methods. Instead, a more modern definition of occupancy should include three independent 

components that all contribute to resolution. An occupancy measurement’s resolution is dependent on 

spatial awareness, time responsiveness, and the degree of accuracy to count individual occupants as 

represented by Fig. 1 [14]. 

 

This definition allows a more complete framework to highlight strengths and weaknesses of varying 

occupancy sensing technologies. For instance, an array of high-resolution occupancy sensors would be able 

to not only know if a space is occupied or unoccupied, but this array would be able to count occupants, 

Volume 12, Number 3, 2023

International Journal of Smart Grid and Clean Energy

40

Fig. 1. Occupancy resolution [14].



 

identify the occupants, and even tell some information about the occupants’ activities. Additionally, it could be 

able to tell exactly what room the occupants are in or, at an even higher resolution, what part of the room 

they are in, and the array would detect occupancy changes in real time without latency. 

4. Occupancy Sensing Techniques 

4.1. Passive infrared sensors 

Passive Infrared (PIR) sensors are frequently employed successfully in basic energy reduction 

technologies. These traditional occupancy sensors output a binary value which indicates whether the area it 

is monitoring has at least one occupant or no occupants [14]. Although these occupancy sensors have 

provided some energy savings, studies have shown that these savings vary from 10% to 45% depending 

upon the room in which they are employed [15]. These sensors are particularly effective for controlling 

lighting in low traffic, infrequently occupied, and closed spaces such as storage spaces, but they are not 

effective for open layouts such as in libraries, cafeterias, or offices [16]. Additionally, these sensors are 

limited by line of sight, and the activation threshold in which they sense movement causes frequent false 

positives and false negatives. False positives occur when the sensor signals that there is occupancy, when in 

fact there is not. This equates to wasteful energy practices, mainly an empty but illuminated room. False 

negatives often happen due to sedentary occupant behaviors which do not meet the PIR sensor’s threshold 

and often leave occupants in the dark [4]. The inability of PIR sensors to count occupants, give insights into 

occupants’ behaviors and identities, or to log high-resolution spatial and temporal data makes them 

inadequate in providing data to make substantial energy management decisions. 

4.2. Ultrasonic sensors 

Ultrasonic sensors have also been successfully deployed to estimate occupancy. These sensors send 

inaudible acoustic signals within the range of 25 kHz to 40 kHz, and they have the advantage that they are 

not limited by line of sight. These sensors can detect motion even in large areas containing obstacles or in 

unusually shaped and furnished rooms such as bathrooms and office spaces [4]. Although these sensors 

solve some of the problems that PIR sensors have, they are more expensive than PIR sensors, and they have 

a higher false positive rate [4]. Additionally, they do not provide high resolution time or spatial data and only 

estimate a binary occupancy value like that of a PIR sensor. 

4.3. CO2 sensors 

Other studies have shown that indoor CO2 concentration is indicative of occupancy by proxy, as humans 

are the main source of CO2 production. However, existing approaches suffer from the delay of detection 

because of the relatively long time (10 minutes to 15 minutes) it takes for CO2 to build up to the level of 

concentration indicative of actual occupancy [17]. Occupancy estimation through CO2 sensing has other 

shortcomings. Primarily, individual humans exhibit differing CO2 emission rates which makes it an 

inaccurate proxy when determining the exact number of occupants. Additionally, human behaviors, such as 

opening and closing doors and windows, change the ventilation rate of a given area and cause an introduction 

of additional noise to CO2 measurements [10]. This noise is difficult to filter, further affecting the accuracy of 

sensing. Even though studies have been successful in estimating building occupancy by taking CO2 readings 

at the air-handling units supply and returns [18], CO2 occupancy estimates lack precise spatial information 

as CO2 emission is a transient process, and CO2 concentrations diffuse and redistribute due to air currents 

and ventilation. The lag in CO2 build up only adds to the loss of spatial resolution in this data [19]. 

4.4. Other technologies 

Other innovative methodologies exploit existing sources of implicit occupancy information that are already 
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collected but not necessarily used for building control decisions. Examples of these methodologies may be 

data created from elevator usage, detection of mobile devices at Wi-Fi access points, computer network traffic, 

or entry and exit events that are required in secure access areas [19]. These methodologies do have the 

advantage that the sensors are already present, and therefore there is little infrastructural investment 

required. Additionally, they are typically powered and capable of communication and can be incorporated 

into building control systems. Other research areas have used dedicated sensors like chair sensors [20], 

image processing occupancy sensors [21], relative humidity and temperature sensors [22], IT infrastructure 

including computer networking, phone calls, computer usage and access badges [23], and various other 

sensor arrays [24]. Unfortunately, none of these technologies are sufficient for high-resolution decision 

making.  

5. Doppler Radar Occupancy Sensing 

Doppler radar is a specialized radar that transmits an electromagnetic signal and deduces information from 

the modulated signal that reaches the receiver. Most commonly, this modulated signal can be processed to 

ascertain velocity of an object, as used by law enforcement officers in traffic patrolling duties. This modulated 

signal is commonly used to determine location, displacement, or acceleration. Given this phenomenon, it is 

possible to use a Doppler radar frequency shift to measure human movement in, out, and within buildings. 

Some may argue that it is difficult to extract meaningful information from Doppler radar signals, and 

although these sensors are more complex than a conventional PIR or ultrasonic sensor, it is in this 

complexity that these sensors showcase their ability to outperform methods previously mentioned in this 

report. In terms of temporal data, Doppler radar sensors can give accurate, real-time resolution like most 

other conventional approaches. In terms of occupancy resolution, studies have shown that this sensing 

methodology can count individuals [25], [26], classify their behaviors, and even identify individuals based on 

cardio-respiration patterns that are unique to each individual [27]. The following section will further 

elaborate on the Doppler radar occupancy sensor used in this case study. 

6. Doppler Radar Sensor Design 

The True Presence Occupancy Detection Sensor (TruePODS™) modules, developed by Adnoviv, Inc., were 

used in this study [28 , 29] . These sensors employ Doppler radar cardiopulmonary sensing technology to 

detect true human presence. These innovative sensors detect occupancy based on a Doppler radar frequency 

shift that senses a motion-modulated signal during movements as small as chest deflection during normal 

respiration. In simple terms, this device transmits a low-power microwave radio source, radiated at power 

levels lower than typical cell phones or WiFi routers, and they receive the signal back and sense any 

modulation patterns that correspond to occupancy. Fig. 2 shows the TruePODS block diagram and 

photograph. TruePODS system includes a wireless interface with a data user platform, with an option to log 

the data on an SD card, offering opportunities for the development of long-term decision models or 

independent studies by building managers. An RF signal is generated on the programmable microcontroller 

and split into two signals for transmitting and downconversion. The transmit portion of the signal is fed to 

the antenna through a power amplifier and another RF power splitter, and the downconversion portion of 

the signal is fed to the RF mixer’s local oscillator input port. The signal is transmitted by the antenna, and the 

reflected signal is received by the same antenna. The RF power splitter directs the received signal to the 

mixer’s RF input port. The output from the mixer is a baseband signal proportional to the motion of the 

objects off which the RF signal reflected. This baseband signal is amplified and filtered before being returned 

to the microcontroller to be digitized and processed. If the objects in the room are entirely stationary, there is 

no time-varying phase shift between the transmitted and received signal. However, if there is movement 
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within the room, the returned signal will have a unique modulation signature that can be demodulated to 

ascertain information. Through signal processing, body movement is detected, and a corresponding 

occupancy event is logged via a time reference. 

 

Fig. 2. Block diagram and photograph of TruePODS doppler radar occupancy sensor. 

7. Case Study 

7.1. Building specifications 

The building in which the sensors were placed is Sakamaki Hall, a building that is centrally located on the 

University of Hawai’i at Manoa’s campus. It is a four-floor building with two atria that provide natural lighting 

and space between four distinct zones on each floor as depicted in Figure 3. The building is primarily 

comprised of faculty offices on the second, third, and fourth floors, with sixteen classrooms located on the 

first floor. These offices and classrooms are primarily used by the Departments of Philosophy, History, 

Psychology, and Religion. Two elevators are located between the atria, and stairs flank the north and south 

ends of the building. Sakamaki Hall is centrally cooled. However, this cooling system is also connected to 

other surrounding buildings. 

 

7.2. Sensor locations 

All the sensors used in this study were placed on the fourth floor of Sakamaki Hall. Six sensors were 

positioned in entryways of three separate zones as annotated in Figure 4. It is important to note that there is 

no way to enter or exit these zones without passing these sensors. Sensors are labeled according to their 

location, with the first two letters representing cardinal directions, and the third letter corresponding to 

whether the sensor is near (N) or far (F) from the elevators. For example, SWF is on the southern end of the 

building, western side, and far from the elevators. The TruePODS modules were placed in electrical outlet 

cover boxes and plugged in to existing standard 120V AC power outlets. Figure 5 shows this protective 

enclosure and the sensor within. 
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7.3. Data collection and processing 

Data was analyzed using MATLAB to determine occupancy intervals. The events recorded demonstrate 

when one person enters or exits the building zone. These events do not distinguish between entering and 

exiting. Therefore, in analyzing the data, it is assumed that the first event of the day is an entrance event, and 

the last event of the day is an exit event. This is a reasonable assumption given the building type and the fact 

that this building is locked every evening and accessible to only individuals with keys. With this assumption, 

all occupancy measurements are conservative, and occupancy is defined as the period between the first 

person entering the building and the last person leaving. This conservatively assumes that the building is 

occupied at all times between the first and last event of the day. Temporally, occupancy events are high-

resolution, and they are recorded to the accuracy of a second. Occupancy is then measured as a percentage 

representing the percentage of a day that the building is occupied. Building power draw data includes entire 

power draw of Sakamaki Hall and of HVAC alone in kilovolt-amperes (kVA), in 15 minute intervals. To create 

congruency between power draw data and occupancy data, occupancy events in this study are rounded to the 

nearest fifteen-minute interval. 

 

Fig. 5. TruePODS plugged in to AC outlet. Protective enclosure (left), and microSD card access (right). 

8. Findings 

Ideally, a building’s energy usage serves its occupants. It provides its occupants with thermal comfort, 
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Fig. 4. Fourth floor of Sakamaki Hall with six sensor locations annotated



 

adequate illumination, and the energy resources necessary to perform a task. Theoretically, there is little 

need for energy usage when a building is unoccupied. This is especially true in the case of Sakamaki Hall, as 

it serves no purpose without occupants. Exceptions to this would include buildings that require consistent 

air temperatures, such as museums with ancient artifacts and server farms, or buildings that automate tasks 

such as factories or laboratories. With time-referenced occupancy events and energy data, it is possible to 

study trends in the data to see if Sakamaki Hall effectively matches its power draw to its occupancy. As the 

data shows, Sakamaki Hall’s occupancy and power draw differ across varying categories. Additionally, the 

data reveals changing correlations between occupancy and power draw, signifying changes in building 

efficiency given specific parameters. Table 1 and Fig. 6 shows average building power draw and HVAC power 

draw from March 2020 to February 2021, and occupancy data from June to December 2020. September and 

October are typically the hottest months at UH Manoa campus, leading to increased HVAC power draw and 

overall building energy consumption. Taking this factor into account, “weatherized” power draw does not 

change much during the year. 

 
Table

 
1.

 
Occupancy and building power draw averages

 
Month 

Average % Occupancy 
(by time) 

Average Building 
Power Draw (kVA) 

Average HVAC Power 
Draw (kVA) 

HVAC Power 
Draw (%) 

Mar ‘20
 

N/A 63.5 13.0 21%
 

Apr ‘20
 

N/A 55.5 11.7 21%
 

May ‘20
 

N/A 55.7 11.9 21%
 

Jun ‘20
 

56%
 

56.7 12.0 21%
 

Jul ‘20
 

43%
 

60.3 15.6 26%
 

Aug ‘20
 

35%
 

67.5 20.4 30%
 

Sep ‘20
 

36%
 

71.9 24.8 34%
 

Oct ‘20
 

38%
 

65.7 20.6 31%
 

Nov ‘20
 

38%
 

62.8 17.6 28%
 

Dec ‘20
 

27%
 

60.3 13.0 22%
 

Jan ‘21 N/A 58.5 12.5 21%
 

Feb ‘21 N/A
 

59.7 13.5 23%
 

Plotting the average percentage of time occupied monthly, average total monthly power draw, and average 

HVAC power draw, it is immediately apparent that not all three are directly correlated.  HVAC and total 

power draw follow similar trends consistent with outdoor climate, with March appearing to be an outlier. 

However, average occupancy seems almost entirely uncorrelated with power draw, as shown in Table 1 and 

Figure 6. Calculations confirm that the correlation coefficient between total power draw and HVAC power 

draw is almost perfect at 0.93 while the correlation coefficient between total power draw and occupancy is -

0.47. 
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In terms of energy efficiency, ideally a building’s energy usage should mirror its periods of occupancy, as 

was previously discussed. Table 2 shows the average power draw and total power draw during periods of 

occupancy and vacancy. Although the average power draw in Sakamaki Hall is higher in times of occupancy, 

the building was unoccupied more than it is occupied. Thus as Table 2 indicates, the total power draw is 

higher over the combined periods of vacancy than the combined periods of occupancy.  

 

   
 Total Power Draw (kVA) Average Building Power Draw 

(kVA) 

Occupied 516,087.90 71.5 

Unoccupie
d 

609,951.20 56.4 

% Change 18% -21% 

 
In a school building, one would expect to find a difference in the occupancy rates, and therefore power 

draw, on weekdays as opposed to weekends. Most of the academic instruction takes place during the week 

and faculty can be expected to spend the most time working between Monday and Friday as well. Table 3 

shows the average occupancy and average power draw for a weekday and a weekend day. Although data 

shows that both average power draw and average occupancy percent decrease on the weekends, average 

power draw only sees a 14% reduction while average occupancy decreases by 30%. This disparity once again 

demonstrates that there is room for improvement to increase energy efficiency. 

 

   
 Average Power Draw (kVA) Average Occupancy (%) 

Weekday 64.1 43% 

Weekend 55.1 30% 

% Change -14% -30% 

 

School buildings also experience seasonality. Although summer classes are offered, it can be assumed that 

most classes are offered during the traditional school year and that more students attend those classes than 

ones held in the summer. Therefore, it is reasonable to expect that occupancy rates, and therefore power 

draw, would be lower during the summer months. However, the summer months are traditionally hotter and 

HVAC power draw in Sakamaki Hall amounts to an average 25% of total power draw. Therefore, it is also 

reasonable to expect the opposite to be true, that average power draw would be higher in the summer 

months, regardless of occupancy. A data comparison of July, a summer month, and October, a traditional 

school month, shows that neither assumption is correct. Table 4 shows the average power draw and average 

occupancy for July and October. In this unique case, there is higher power draw in October and lower 

occupancy, even though more students are expected to be on campus attending classes. One possible 

explanation for this anomaly is that increased COVID-19 prevention measures during October deterred 

students and faculty from spending time on campus, but the building continued to consume energy as if 

classes were taking place to maintain ventilation. 

 

Table 4. Comparison of July and October 
 Average Power Draw (kVA) Average Occupancy (%) 

July 60.3 43% 

October 65.7 38% 

% Change 9% -12% 

Other considerations should be made for events on the school calendar which disrupt the normal schedule 
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Table 2. Occupied and unoccupied building data

Table 3. Weekday and weekend data



 

of events. One such example is the holiday recess which typically occurs in December. In comparing data from 

the months of October and December shown in Table 5, the average occupancy decreased by 29% while the 

average power draw only decreased by 8%. This decrease in occupancy is significant even though term-end 

finals may bring more students than normal to campus in December and the average temperatures are 

noticeably lower in December than in October. Therefore, there are likely methods which could be 

implemented to align power draw more closely with occupancy in cases such as this. 

 

Table 5. Comparison of October and December 
 Average Power Draw (kVA) Average Occupancy (%) 

October 65.7 38% 

December 60.2 27% 

% Change -8% -29% 

9. Recommendations 

Although usually expensive, technological improvements to campus buildings could greatly improve the 

energy efficiency as it relates to occupancy. Creating an effective HVAC model from occupancy sensor data 

could be used to control HVAC more efficiently. For example, HVAC set points could be adjusted based on the 

average timing of entrance and exit events or class schedules.  

There are also energy saving alternatives in which little to no investment in infrastructure needs to be 

made. In cases where energy is unnecessarily expended on lighting, and other building loads when there are 

no occupants present, behavioral change can mitigate some of these losses. The simplest recommendation is 

to conduct an increased campaign or educational program to build a culture of energy consciousness in 

faculty, staff, and students. Part of this campaign could include nudges for turning off lights and using posters 

or signs to prime more energy conscious behavior. Descriptive norms have been proven to be even more 

effective than an ordinary poster. For example, informing occupants that 85% of students remember to turn 

off a light is more likely to result in future occupants remembering to turn off the light. Outside agencies 

could improve energy efficiency on campus through incentives or regulations similar to the state’s efforts to 

transition to 100% renewable energy by 2045 which focuses on transportation and electricity generation. In 

a similar light, the states could consider creating tiered goals over the next few decades to increase building 

efficiency and decrease energy waste as buildings account for a large percentage of energy used.  The 

university already has established internal goals and design standards to help us achieve those goals as part 

of Executive Policy EP4.202 [30]. 

10. Limitations and Future Research 

Advanced building studies should not only be based on the contribution of a building’s energy usage to the 

campus’s total load, but also based on realistic and feasible upgrades that can be achieved.  In addition to 

considering buildings with higher load profiles, sensors should be deployed in buildings that have different 

occupancy profiles and topologies. For instance, labs, auditoriums, and the library all experience very 

different usage patterns and structural layouts. This would allow differing energy management strategies to 

be studied for spaces with differing baseloads and variability in occupancy.  Confounding variables such as 

temperature should also be further explored to create a more robust energy management model. The 

addition of more variables and further research will only expand the uses of this data set.   It should also be 

noted that this data was generated during the onset of the COVID-19 global pandemic which undoubtedly 

impacted occupancy rates and patterns. Therefore, it cannot be assumed that the data presented here is 

representative of traditional occupancy in years before the pandemic occurred, or current occupancy trends. 

Since TruePODS are deployed with the aim of improving energy management, another promising 
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advancement would be expanding the data that they provide through additional sensors. If, for instance, a 

light and a temperature sensor were included, wasteful behaviors would become more evident and building 

specific policies and management strategies could be designed to eliminate these. In this case, the sensor 

would provide data showing when a space was unoccupied and lights were left on, and changes in building 

temperature over time could assist in developing intelligent HVAC reduction measures. Other research has 

already proven that Doppler radar can be used to identify direction of movement [31], number of occupants 

[32], and even individual identity authentication [33]. This increased resolution could be implemented within 

the current sensor arrays to create even more accurate occupancy data and therefore implement more 

intelligent energy management practices. 

Finally, this research could be expanded by exploring additional uses for the occupancy sensor data. For 

instance, more robust demand response programs could be developed at the utility level with this data. High 

resolution occupancy data would enable utilities to better predict which loads could be shed and when during 

an event that required demand response intervention. This data could enable a prioritization of various 

zones within a building or could inform a utility as to what loads could be throttled during unforeseen 

shortfalls. Alternatively, these sensors could be used for space analysis to determine if space resources are 

used efficiently. Such analysis could reduce the space constraints as student population continues to grow. 

11. Conclusion 

This single building case study illuminated the need for improved energy management strategies on 

university campuses. Although there are many different sensor technologies which could be used to analyze 

occupancy, Doppler radar occupancy sensors offer the most advanced methodology and have already proven 

successful in this setting. More widespread deployment of such occupancy sensors would allow the university 

to effectively tailor HVAC set point practices and other energy management strategies to specific building 

occupancy behaviors and trends. This sensor expansion, coupled with a continued and ongoing energy 

education campaign among building users and occupants, could have a profound impact on reducing energy 

waste. 
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